8.11 Fold changes

A specific statistical way to prioritize feature data is by Fold changes (FC). This is a relative simple method to quickly identify (significant) changes between two sample groups. A typical use case is to compare the feature intensities before and after an experiment.

To perform FC calculations we first need to specify its parameters. This is best achieved with the getFCParams() function:

getFCParams(c("before", "after"))
#> $rGroups
#> [1] "before" "after" 
#> 
#> $thresholdFC
#> [1] 0.25
#> 
#> $thresholdPV
#> [1] 0.05
#> 
#> $zeroMethod
#> [1] "add"
#> 
#> $zeroValue
#> [1] 0.01
#> 
#> $PVTestFunc
#> function (x, y) 
#> t.test(x, y, paired = TRUE)$p.value
#> <bytecode: 0x55f6147dbe98>
#> <environment: 0x55f6147dc560>
#> 
#> $PVAdjFunc
#> function (pv) 
#> p.adjust(pv, "BH")
#> <bytecode: 0x55f6147dc1a8>
#> <environment: 0x55f6147dc560>

In this example we generate a list with parameters in order to make a comparison between two replicate groups: before and after. Several advanced parameters are available to tweak the calculation process. These are explained in the reference manual (?featureGroups).

The as.data.table function for feature groups is used to perform the FC calculations.

myFCParams <- getFCParams(c("solvent-pos", "standard-pos")) # compare solvent/standard
as.data.table(fGroups, FCParams = myFCParams)[, c("group", "FC", "FC_log", "PV", "PV_log", "classification")]
#>              group           FC      FC_log          PV     PV_log classification
#>             <char>        <num>       <num>       <num>      <num>         <char>
#>   1:     M99_R14_1 8.837494e-01 -0.17829070 0.223506802 0.65070926  insignificant
#>   2:      M99_R4_2 8.500464e-01 -0.23438649 0.778488444 0.10874783  insignificant
#>   3:     M100_R7_3 8.009186e-01 -0.32027248 0.804751489 0.09433821             FC
#>   4:     M100_R5_4 4.140000e+06 21.98119934 0.533213018 0.27309926             FC
#>   5:    M100_R28_5 9.594972e-01 -0.05964952 0.975712373 0.01067819  insignificant
#>  ---                                                                             
#> 676: M425_R319_676 2.149907e+07 24.35777069 0.009681742 2.01404652       increase
#> 677:  M427_R10_677 1.059937e+00  0.08397893 0.371260940 0.43032074  insignificant
#> 678: M427_R319_678 7.776800e+06 22.89074521 0.533213018 0.27309926             FC
#> 679: M432_R383_679 9.816400e+06 23.22676261 0.347009089 0.45965915             FC
#> 680:  M433_R10_680 1.132909e+00  0.18003240 0.293217996 0.53280938  insignificant

The classification column allows you to easily identify if and how a feature changes between the two sample groups. This can also be used to prioritize feature groups:

tab <- as.data.table(fGroups, FCParams = myFCParams)
# only keep feature groups that significantly increase or decrease
fGroupsChanged <- fGroups[, tab[classification %in% c("increase", "decrease")]$group]

The plotVolcano function can be used to visually the FC data:

plotVolcano(fGroups, myFCParams)