Group and align features with OpenMS tools
groupFeaturesOpenMS(feat, ...)
# S4 method for class 'features'
groupFeaturesOpenMS(
feat,
rtalign = TRUE,
QT = FALSE,
maxAlignRT = 30,
maxAlignMZ = 0.005,
maxGroupRT = 12,
maxGroupMZ = 0.005,
extraOptsRT = NULL,
extraOptsGroup = NULL,
verbose = TRUE
)
# S4 method for class 'featuresSet'
groupFeaturesOpenMS(feat, ..., verbose = TRUE)
The features
object with the features to be grouped.
Further parameters passed to the selected grouping algorithm.
Set to TRUE
to enable retention time alignment.
If enabled, use FeatureLinkerUnlabeledQT
instead of FeatureLinkerUnlabeled
for feature
grouping.
Used for retention alignment. Maximum retention time or m/z difference (seconds/Dalton)
for feature pairing. Sets -algorithm:pairfinder:distance_RT:max_difference
and
-algorithm:pairfinder:distance_MZ:max_difference
otpions, respectively.
as maxAlignRT
and maxAlignMZ
, but for grouping of features. Sets
-algorithm:distance_RT:max_difference
and -algorithm:distance_MZ:max_difference
options,
respectively.
Named list
containing extra options that will be passed to
MapAlignerPoseClustering
or FeatureLinkerUnlabeledQT/FeatureLinkerUnlabeled
, respectively. Any
options specified here will override any of the above. Example:
extraOptsGroup=list("-algorithm:distance_RT:max_difference"=12)
(corresponds to setting
maxGroupRT=12
). Set to NULL
to ignore.
if FALSE
then no text output will be shown.
An object of a class which is derived from featureGroups
.
This function uses OpenMS to group features. This function is called when calling groupFeatures
with
algorithm="openms"
.
Retention times may be aligned by the MapAlignerPoseClustering TOPP tool. Grouping is achieved by either the FeatureLinkerUnlabeled or FeatureLinkerUnlabeledQT TOPP tools.
Rost HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich H, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G, Rurik M, Schmitt U, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O, Choudhary JS, Malmstrom L, Aebersold R, Reinert K, Kohlbacher O (2016).
“OpenMS: a flexible open-source software platform for mass spectrometry data analysis.”
Nature Methods, 13(9), 741–748.
doi:10.1038/nmeth.3959
.
pugixml (via Rcpp) is used to process OpenMS XML output.
Eddelbuettel D (2013).
Seamless R and C++ Integration with Rcpp.
Springer, New York.
doi:10.1007/978-1-4614-6868-4
, ISBN 978-1-4614-6867-7.
Eddelbuettel D, Balamuta J (2018).
“Extending R with C++: A Brief Introduction to Rcpp.”
The American Statistician, 72(1), 28-36.
doi:10.1080/00031305.2017.1375990
.
Eddelbuettel D, François R (2011).
“Rcpp: Seamless R and C++ Integration.”
Journal of Statistical Software, 40(8), 1–18.
doi:10.18637/jss.v040.i08
.
Eddelbuettel D, Francois R, Allaire J, Ushey K, Kou Q, Russell N, Ucar I, Bates D, Chambers J (2025).
Rcpp: Seamless R and C++ Integration.
R package version 1.0.14, https://www.rcpp.org.
1
groupFeatures
for more details and other algorithms.