
Package ‘patRoon’
April 25, 2025

Type Package

Title Workflows for Mass-Spectrometry Based Non-Target Analysis

Version 2.3.3

Description Provides an easy-to-use interface to a mass spectrometry based
non-target analysis workflow. Various (open-source) tools are combined
which provide algorithms for extraction and grouping of features,
extraction of MS and MS/MS data, automatic formula and compound annotation
and grouping related features to components. In addition, various tools are
provided for e.g. data preparation and cleanup, plotting results and
automatic reporting.

License GPL-3

LazyData TRUE

RoxygenNote 7.3.2

URL https://github.com/rickhelmus/patRoon

BugReports https://github.com/rickhelmus/patRoon/issues

Encoding UTF-8

Depends R (>= 3.5.0)

SystemRequirements GNU make

Imports methods,
checkmate (>= 1.8.5),
Rcpp,
VennDiagram,
UpSetR,
stats,
utils,
parallel,
grid,
graphics,
RColorBrewer,
data.table,
withr,
digest,

1

https://github.com/rickhelmus/patRoon
https://github.com/rickhelmus/patRoon/issues

2

DBI,
RSQLite (>= 2.2.4),
fst,
processx,
tools,
MSnbase,
Biobase,
BiocParallel,
xcms,
cluster,
fastcluster,
gplots,
heatmaply,
dynamicTreeCut,
dendextend,
igraph,
visNetwork,
rJava,
rcdk,
fingerprint,
mzR,
circlize,
miniUI,
rhandsontable,
rstudioapi,
htmlwidgets,
shiny,
shinyjs,
CAMERA,
enviPat,
knitr,
rmarkdown,
flexdashboard,
DT,
bslib (>= 0.4.2),
reactable (>= 0.4.1),
magrittr,
kableExtra,
R.utils,
magick,
glue,
jsonlite,
Rdpack,
rsm,
future,
future.apply,
fs,
yaml,

3

keys,
backports,
httr,
getPass

Suggests RDCOMClient,
metfRag,
enviPick,
nontarget,
RAMClustR,
cliqueMS,
KPIC,
MetaClean,
MetaCleanData,
testthat,
rlang,
vdiffr,
patRoonData,
devtools,
covr,
DiagrammeR,
DiagrammeRsvg,
rsvg,
pkgload,
splashR,
MS2Quant,
MS2Tox

LinkingTo Rcpp,
rapidjsonr

Config/Needs/pdeps RDCOMClient,
enviPick,
nontarget,
InterpretMSSpectrum,
RAMClustR,
KPIC,
cliqueMS,
MetaClean,
splashR

RdMacros Rdpack

Collate 'RcppExports.R'
'generics.R'
'cache.R'
'main.R'
'workflow-step.R'
'TP.R'
'TP-structure.R'
'TP-CTS.R'
'TP-biotransformer.R'

4

'TP-formula.R'
'TP-library.R'
'TP-library_formula.R'
'features.R'
'workflow-step-set.R'
'features-set.R'
'feature_groups.R'
'feature_groups-set.R'
'TP-logic.R'
'utils.R'
'utils-adduct.R'
'adduct.R'
'analysisInfo.R'
'check_ui.R'
'utils-components.R'
'components.R'
'check_components.R'
'check_features.R'
'components-camera.R'
'components-features.R'
'components-cliquems.R'
'components-clust.R'
'components-intclust.R'
'components-set.R'
'components-nontarget.R'
'components-nontarget-set.R'
'components-openms.R'
'components-ramclustr.R'
'components-specclust.R'
'feature_annotations.R'
'formulas.R'
'mspeaklists.R'
'compounds.R'
'utils-compounds.R'
'utils-screening.R'
'feature_groups-screening.R'
'feature_groups-screening-set.R'
'components-tps.R'
'compounds-cluster.R'
'mslibrary.R'
'compounds-library.R'
'compounds-metfrag.R'
'utils-feat_annotations-set.R'
'compounds-set.R'
'utils-sirius.R'
'compounds-sirius.R'
'convert.R'
'defunct.R'

5

'deprecated.R'
'utils-IPO.R'
'doe-optimizer.R'
'feature_groups-bruker.R'
'feature_groups-comparison.R'
'feature_groups-envimass.R'
'feature_groups-filter.R'
'feature_groups-kpic2.R'
'feature_groups-openms.R'
'feature_groups-optimize.R'
'feature_groups-optimize-kpic2.R'
'feature_groups-optimize-openms.R'
'feature_groups-optimize-xcms.R'
'feature_groups-optimize-xcms3.R'
'feature_groups-plot.R'
'feature_groups-sirius.R'
'feature_groups-tasq.R'
'feature_groups-xcms.R'
'feature_groups-xcms3.R'
'utils-bruker.R'
'features-bruker.R'
'features-envipick.R'
'features-kpic2.R'
'features-openms.R'
'features-optimize.R'
'features-optimize-envipick.R'
'features-optimize-kpic2.R'
'features-optimize-openms.R'
'features-optimize-xcms.R'
'features-optimize-xcms3.R'
'features-safd.R'
'features-sirius.R'
'features-tasq.R'
'features-xcms.R'
'features-xcms3.R'
'formulas-bruker.R'
'formulas-genform.R'
'formulas-set.R'
'formulas-sirius.R'
'mslibrary-json.R'
'mslibrary-msp.R'
'mspeaklists-bruker.R'
'utils-mzr.R'
'mspeaklists-mzr.R'
'mspeaklists-set.R'
'multi-process-classic.R'
'multi-process-future.R'
'multi-process.R'

6 Contents

'project-tool.R'
'report-html.R'
'report-html-TPs.R'
'report-html-components.R'
'report-html-feat_annotations.R'
'report-html-features.R'
'report-html-utils.R'
'report-legacy.R'
'report.R'
'utils-TPs.R'
'utils-checkmate.R'
'utils-exported.R'
'utils-feat_annotations.R'
'utils-features.R'
'utils-formulas.R'
'utils-mol.R'
'utils-mslibrary.R'
'utils-mspeaklists.R'
'utils-optimize.R'
'utils-plot.R'
'utils-progress.R'
'utils-sets.R'
'utils-xcms.R'
'zzz.R'

VignetteBuilder knitr

Contents
patRoon-package . 9
addFormulaScoring . 11
adduct-class . 19
adduct-utils . 21
analysis-information . 22
analysisinfo-dataframe . 24
bruker-utils . 26
caching . 28
checkFeatures . 29
comparison . 32
componentsClust-class . 35
componentsNT-class . 37
componentsSpecClust-class . 39
componentsTPs-class . 40
componentTable . 42
compoundsCluster-class . 47
compoundScorings . 51
compoundsSIRIUS-class . 51
convertMSFiles . 52

Contents 7

defaultOpenMSAdducts . 55
EICParams . 55
feature-optimization . 56
feature-plotting . 61
featureAnnotations-class . 66
featureGroupsComparison-class . 72
featureQualityNames . 73
features-class . 74
findFeatures . 80
findFeaturesBruker . 81
findFeaturesEnviPick . 82
findFeaturesKPIC2 . 83
findFeaturesOpenMS . 84
findFeaturesSAFD . 87
findFeaturesSIRIUS . 89
findFeaturesXCMS . 90
findFeaturesXCMS3 . 91
formulas-class . 92
formulaScorings . 99
formulasSIRIUS-class . 100
generateComponents . 101
generateComponentsCAMERA . 102
generateComponentsCliqueMS . 104
generateComponentsIntClust . 106
generateComponentsNontarget . 108
generateComponentsOpenMS . 110
generateComponentsRAMClustR . 113
generateComponentsSpecClust . 116
generateComponentsTPs . 117
generateCompounds . 120
generateCompoundsLibrary . 122
generateCompoundsMetFrag . 124
generateCompoundsSIRIUS . 130
generateFormulas . 133
generateFormulasDA . 135
generateFormulasGenForm . 138
generateFormulasSIRIUS . 143
generateMSPeakLists . 147
generateMSPeakListsDA . 148
generateMSPeakListsDAFMF . 150
generateMSPeakListsMzR . 151
generateTPs . 153
generateTPsBioTransformer . 154
generateTPsCTS . 158
generateTPsLibrary . 161
generateTPsLibraryFormula . 164
generateTPsLogic . 167
generics . 168

8 Contents

genFormulaTPLibrary . 176
getDefAvgPListParams . 178
getEICs . 180
getFCParams . 180
getPICSet . 181
getXCMSSet . 182
groupFeatures . 183
groupFeaturesKPIC2 . 184
groupFeaturesOpenMS . 186
groupFeaturesSIRIUS . 188
groupFeaturesXCMS . 189
groupFeaturesXCMS3 . 190
groupTable . 192
importFeatureGroups . 206
importFeatureGroupsBrukerPA . 207
importFeatureGroupsBrukerTASQ . 208
importFeatureGroupsEnviMass . 209
importFeatureGroupsKPIC2 . 210
importFeatureGroupsXCMS . 210
importFeatureGroupsXCMS3 . 211
importFeatures . 212
importFeaturesEnviMass . 213
importFeaturesKPIC2 . 213
importFeaturesXCMS . 214
importFeaturesXCMS3 . 215
loadMSLibrary . 216
loadMSLibraryMoNAJSON . 217
loadMSLibraryMSP . 220
makeHCluster . 223
makeSet . 225
newProject . 226
optimizedParameters . 227
parents . 229
peakLists . 233
plotHeatMap . 241
pred-aggr-params . 243
pred-quant . 244
pred-tox . 249
printPackageOpts . 252
records . 252
replicateGroupSubtract . 258
report . 262
reportCSV . 266
screenInfo . 272
screenSuspects . 281
sets-workflow . 285
settings . 286
specSimParams . 287

patRoon-package 9

transformationProductsFormula-class . 288
transformationProductsStructure-class . 289
verifyDependencies . 294
withOpt . 294
workflowStep-class . 295
workflowStepSet-class . 297

Index 299

patRoon-package Workflow solutions for mass-spectrometry based non-target analysis.

Description

Provides an easy-to-use interface to a mass spectrometry based non-target analysis workflow. Vari-
ous (open-source) tools are combined which provide algorithms for extraction and grouping of fea-
tures, extraction of MS and MS/MS data, automatic formula and compound annotation and group-
ing related features to components. In addition, various tools are provided for e.g. data preparation
and cleanup, plotting results and automatic reporting.

Package options

The following package options (see options) can be set:

• patRoon.checkCentroided: If set to TRUE (the default) then the analyses files are verified to
be centroided before loading any MS data. While these checks are optimized and cached, it
may be useful to set this option to FALSE when processing very large numbers of analyses.

• patRoon.cache.mode: A character setting the current caching mode: "save" and "load"
will only save/load results to/from the cache, "both" (default) will do both and "none" to
completely disable caching. This option can be changed anytime, which might be useful, for
instance, to temporarily disable cached results before running a function.

• patRoon.cache.fileName: a character specifying the name of the cache file (default is
‘cache.sqlite’).

• patRoon.MP.maxProcs: The maximum number of processes that should be initiated in paral-
lel. A good starting point is the number of physical cores, which is the default as detected by
detectCores. This option is only used when ‘patRoon.MP.method="classic"’.

• patRoon.MP.method: Either "classic" or "future". The former is the default and uses pro-
cessx to execute multiple commands in parallel. When "future" the future.apply package
is used for parallelization, which is especially useful for e.g. cluster computing.

• patRoon.MP.futureSched: Sets the future.scheduling function argument for future_lapply.
Only used if ‘patRoon.MP.method="future"’.

• patRoon.MP.logPath: The path used for logging of output from commands executed by
multiprocess. Set to FALSE to disable logging.

• patRoon.path.pwiz: The path in which the ProteoWizard binaries are installed. If unset
an attempt is made to find this directory from the Windows registry and ‘PATH’ environment
variable.

https://CRAN.R-project.org/package=processx
https://CRAN.R-project.org/package=processx

10 patRoon-package

• patRoon.path.GenForm: The path to the GenForm executable. If not set (the default) the
internal GenForm binary is used. Only set if you want to override the executable.

• patRoon.path.MetFragCL: The complete file path to the MetFrag CL ‘jar’ to be used by
generateCompoundsMetFrag. Example: "C:/MetFrag2.4.2-CL.jar".

• patRoon.path.MetFragCompTox: The complete file path to the CompTox database ‘csv’ file.
See generateCompounds for more details.

• patRoon.path.MetFragPubChemLite: The complete file path to the PubChemLite database
‘csv’ file. See generateCompounds for more details.

• patRoon.path.SIRIUS: The directory in which the SIRIUS binaries are installed. Used by all
functions that interface with SIRIUS, such as generateFormulasSIRIUS and generateCompoundsSIRIUS.
Example: "C:/sirius-win64-3.5.1". Note that the location of the binaries differs for each
operating system. are installed in different subdirectories for each location inside this differs
for each operating system

• patRoon.path.OpenMS: The path in which the OpenMS binaries are installed.
• patRoon.path.pngquant: The path of the pngquant binary that is used when optimizing

‘.png’ plots generated by reportHTML (with optimizePng set to TRUE). If the binary can be
located through the ‘PATH’ environment variable this option can remain empty. Note that some
of the functionality of reportHTML only locates the binary through the ‘PATH’ environment
variable, hence, it is recommended to set up ‘PATH’ instead.

• patRoon.path.obabel: The path in which the OpenBabel binaries are installed.
• patRoon.path.BiotransFormer The full file path to the biotransformer ‘.jar’ command

line utility. This needs to be set when generateTPsBioTransformer is used. For more details
see https://bitbucket.org/djoumbou/biotransformer/src/master.

Most external dependencies are provided by patRoonExt or otherwise found in the system environ-
ment ‘PATH’ variable. However, the patRoon.path.* options should be set if this fails or you want
to override the location. The verifyDependencies function can be used to assess if dependencies
are found.

Author(s)

Maintainer: Rick Helmus <r.helmus@uva.nl> (ORCID)

Other contributors:

• Olaf Brock (ORCID) [contributor]
• Vittorio Albergamo (ORCID) [contributor]
• Andrea Brunner (ORCID) [contributor]
• Emma Schymanski (ORCID) [contributor]
• Bas van de Velde (ORCID) [contributor]
• Leon Saal (ORCID) [contributor]

See Also

Useful links:

• https://github.com/rickhelmus/patRoon

• Report bugs at https://github.com/rickhelmus/patRoon/issues

https://bitbucket.org/djoumbou/biotransformer/src/master
https://orcid.org/0000-0001-9401-3133
https://orcid.org/0000-0003-4727-8459
https://orcid.org/0000-0002-5347-1362
https://orcid.org/0000-0002-2801-1751
https://orcid.org/0000-0001-6868-8145
https://orcid.org/0000-0003-1292-3251
https://orcid.org/0000-0002-3522-7729
https://github.com/rickhelmus/patRoon
https://github.com/rickhelmus/patRoon/issues

addFormulaScoring 11

addFormulaScoring Compound annotations class

Description

Contains data for compound annotations for feature groups.

Usage

addFormulaScoring(
compounds,
formulas,
updateScore = FALSE,
formulaScoreWeight = 1

)

S4 method for signature 'compounds'
defaultExclNormScores(obj)

S4 method for signature 'compounds'
show(object)

S4 method for signature 'compounds'
identifiers(compounds)

S4 method for signature 'compounds'
filter(
obj,
minExplainedPeaks = NULL,
minScore = NULL,
minFragScore = NULL,
minFormulaScore = NULL,
scoreLimits = NULL,
...

)

S4 method for signature 'compounds'
addFormulaScoring(
compounds,
formulas,
updateScore = FALSE,
formulaScoreWeight = 1

)

S4 method for signature 'compounds'
getMCS(obj, index, groupName)

12 addFormulaScoring

S4 method for signature 'compounds'
plotStructure(obj, index, groupName, width = 500, height = 500)

S4 method for signature 'compounds'
plotScores(

obj,
index,
groupName,
normalizeScores = "max",
excludeNormScores = defaultExclNormScores(obj),
onlyUsed = TRUE

)

S4 method for signature 'compounds'
annotatedPeakList(
obj,
index,
groupName,
MSPeakLists,
formulas = NULL,
onlyAnnotated = FALSE

)

S4 method for signature 'compounds'
plotSpectrum(
obj,
index,
groupName,
MSPeakLists,
formulas = NULL,
plotStruct = FALSE,
title = NULL,
specSimParams = getDefSpecSimParams(),
mincex = 0.9,
xlim = NULL,
ylim = NULL,
maxMolSize = c(0.2, 0.4),
molRes = c(100, 100),
...

)

S4 method for signature 'compounds'
consensus(
obj,
...,
absMinAbundance = NULL,
relMinAbundance = NULL,
uniqueFrom = NULL,

addFormulaScoring 13

uniqueOuter = FALSE,
rankWeights = 1,
labels = NULL

)

S4 method for signature 'compoundsSet'
show(object)

S4 method for signature 'compoundsSet'
delete(obj, i, j, ...)

S4 method for signature 'compoundsSet,ANY,missing,missing'
x[i, j, ..., sets = NULL, updateConsensus = FALSE, drop = TRUE]

S4 method for signature 'compoundsSet'
filter(obj, ..., sets = NULL, updateConsensus = FALSE, negate = FALSE)

S4 method for signature 'compoundsSet'
plotSpectrum(
obj,
index,
groupName,
MSPeakLists,
formulas = NULL,
plotStruct = FALSE,
title = NULL,
specSimParams = getDefSpecSimParams(),
mincex = 0.9,
xlim = NULL,
ylim = NULL,
maxMolSize = c(0.2, 0.4),
molRes = c(100, 100),
perSet = TRUE,
mirror = TRUE,
...

)

S4 method for signature 'compoundsSet'
addFormulaScoring(
compounds,
formulas,
updateScore = FALSE,
formulaScoreWeight = 1

)

S4 method for signature 'compoundsSet'
annotatedPeakList(obj, index, groupName, MSPeakLists, formulas = NULL, ...)

14 addFormulaScoring

S4 method for signature 'compoundsSet'
consensus(

obj,
...,
absMinAbundance = NULL,
relMinAbundance = NULL,
uniqueFrom = NULL,
uniqueOuter = FALSE,
rankWeights = 1,
labels = NULL,
filterSets = FALSE,
setThreshold = 0,
setThresholdAnn = 0,
setAvgSpecificScores = FALSE

)

S4 method for signature 'compoundsSet'
unset(obj, set)

S4 method for signature 'compoundsConsensusSet'
unset(obj, set)

S4 method for signature 'compoundsSIRIUS'
delete(obj, i = NULL, j = NULL, ...)

Arguments

formulas The formulas object that should be used for scoring/annotation. For plotSpectrum
and annotatedPeakList: set to NULL to ignore.

updateScore, formulaScoreWeight
If updateScore=TRUE then the annotation score column is updated by adding
normalized values of the formula score (weighted by ‘formulaScoreWeight’).
Currently, this only makes sense for annotations performed with MetFrag!

obj, object, compounds, x
The compound object.

minExplainedPeaks, scoreLimits
Passed to the featureAnnotations method.

minScore, minFragScore, minFormulaScore
Minimum overall score, in-silico fragmentation score and formula score, re-
spectively. Set to NULL to ignore. The scoreLimits argument allows for more
advanced score filtering.

... For plotSpectrum: Further arguments passed to plot.
For delete: passed to the function specified as j.
for filter: passed to the featureAnnotations method.
For consensus: any further (and unique) compounds objects.
For sets workflow methods: further arguments passed to the base compounds
method.

addFormulaScoring 15

index The numeric index of the candidate structure.
For plotStructure and getMCS: multiple indices (i.e. vector with length >=2)
should be specified to plot/calculate the most common substructure (MCS). Al-
ternatively, ‘-1’ may be specified to select all candidates.
For plotSpectrum: two indices can be specified to compare spectra. In this
case groupName should specify values for the spectra to compare.

groupName The name of the feature group (or feature groups when comparing spectra) to
which the candidate belongs.

width, height The dimensions (in pixels) of the raster image that should be plotted.
normalizeScores

A character that specifies how normalization of annotation scorings occurs.
Either "none" (no normalization), "max" (normalize to max value) or "minmax"
(perform min-max normalization). Note that normalization of negative scores
(e.g. output by SIRIUS) is always performed as min-max. Furthermore, cur-
rently normalization for compounds takes the original min/max scoring values
into account when candidates were generated. Thus, for compounds scoring,
normalization is not affected when candidate results were removed after they
were generated (e.g. by use of filter).

excludeNormScores

A character vector specifying any compound scoring names that should not
be normalized. Set to NULL to normalize all scorings. Note that whether any
normalization occurs is set by the excludeNormScores argument.
For compounds: By default score and individualMoNAScore are set to mimic
the behavior of the MetFrag web interface.

onlyUsed If TRUE then only scorings are plotted that actually have been used to rank data
(see the scoreTypes argument to generateCompoundsMetFrag for more de-
tails).

MSPeakLists The MSPeakLists object that was used to generate the candidate

onlyAnnotated Set to TRUE to filter out any peaks that could not be annotated.

plotStruct If TRUE then the candidate structure is drawn in the spectrum. Currently not
supported when comparing spectra.

title The title of the plot. If NULL a title will be automatically made.

specSimParams A named list with parameters that influence the calculation of MS spectra sim-
ilarities. See the spectral similarity parameters documentation for more details.

mincex The formula annotation labels are automatically scaled. The mincex argument
forces a minimum cex value for readability.

xlim, ylim Sets the plot size limits used by plot. Set to NULL for automatic plot sizing.

maxMolSize Numeric vector of size two with the maximum width/height of the candidate
structure (relative to the plot size).

molRes Numeric vector of size two with the resolution of the candidate structure (in
pixels).

absMinAbundance, relMinAbundance
Minimum absolute or relative (‘0-1’) abundance across objects for a result to be
kept. For instance, relMinAbundance=0.5 means that a result should be present

16 addFormulaScoring

in at least half of the number of compared objects. Set to ‘NULL’ to ignore and
keep all results. Limits cannot be set when uniqueFrom is not NULL.

uniqueFrom Set this argument to only retain compounds that are unique within one or more
of the objects for which the consensus is made. Selection is done by setting the
value of uniqueFrom to a logical (values are recycled), numeric (select by
index) or a character (as obtained with algorithm(obj)). For logical and
numeric values the order corresponds to the order of the objects given for the
consensus. Set to NULL to ignore.

uniqueOuter If uniqueFrom is not NULL and if uniqueOuter=TRUE: only retain data that are
also unique between objects specified in uniqueFrom.

rankWeights A numeric vector with weights of to calculate the mean ranking score for each
candidate. The value will be re-cycled if necessary, hence, the default value of
‘1’ means equal weights for all considered objects.

labels A character with names to use for labelling. If NULL labels are automatically
generated.

i, j, drop Passed to the featureAnnotations method.

sets (sets workflow) A character with name(s) of the sets to keep (or remove if
negate=TRUE). Note: if updateConsensus=FALSE then the setCoverage col-
umn of the annotation results is not updated.

updateConsensus

(sets workflow) If TRUE then the annonation consensus among set results is
updated. See the Sets workflows section for more details.

negate Passed to the featureAnnotations method.

perSet, mirror (sets workflow) If perSet=TRUE then the set specific mass peaks are annotated
separately. Furthermore, if mirror=TRUE (and there are two sets in the object)
then a mirror plot is generated.

filterSets (sets workflow) Controls how algorithms concensus abundance filters are ap-
plied. See the Sets
workflows section below.

setThreshold, setThresholdAnn
(sets workflow) Thresholds used to create the annotation set consensus. See
generateCompounds.

setAvgSpecificScores

(sets workflow) If TRUE then set specific annotation scores (e.g. MS/MS and iso-
topic pattern match scores) are averaged for the set consensus. See generateCompounds.

set (sets workflow) The name of the set.

Details

compounds objects are obtained from compound generators. This class is derived from the featureAnnotations
class, please see its documentation for more methods and other details.

Value

addFormulaScoring returns a compounds object updated with formula scoring.

addFormulaScoring 17

getMCS returns an rcdk molecule object (IAtomContainer).

consensus returns a compounds object that is produced by merging multiple specified compounds
objects.

Methods (by generic)

• defaultExclNormScores(compounds): Returns default scorings that are excluded from nor-
malization.

• show(compounds): Show summary information for this object.

• identifiers(compounds): Returns a list containing for each feature group a character vector
with database identifiers for all candidate compounds. The list is named by feature group
names, and is typically used with the identifiers option of generateCompoundsMetFrag.

• filter(compounds): Provides rule based filtering for generated compounds. Useful to elim-
inate unlikely candidates and speed up further processing. Also see the featureAnnotations
method.

• addFormulaScoring(compounds): Adds formula ranking data from a formulas object as an
extra compound candidate scoring (formulaScore column). The formula score for each com-
pound candidate is between ‘0-1’, where zero means no match with any formula candidates,
and one means that the compound candidate’s formula is the highest ranked.

• getMCS(compounds): Calculates the maximum common substructure (MCS) for two or more
candidate structures for a feature group. This method uses the get.mcs function from rcdk.

• plotStructure(compounds): Plots a structure of a candidate compound using the rcdk
package. If multiple candidates are specified (i.e. by specifying a vector for index) then
the maximum common substructure (MCS) of the selected candidates is drawn.

• plotScores(compounds): Plots a barplot with scoring of a candidate compound.

• annotatedPeakList(compounds): Returns an MS/MS peak list annotated with data from a
given candidate compound for a feature group.

• plotSpectrum(compounds): Plots an annotated spectrum for a given candidate compound
for a feature group. Two spectra can be compared by specifying a two-sized vector for the
index and groupName arguments.

• consensus(compounds): Generates a consensus of results from multiple objects. In order to
rank the consensus candidates, first each of the candidates are scored based on their original
ranking (the scores are normalized and the highest ranked candidate gets value ‘1’). The
(weighted) mean is then calculated for all scorings of each candidate to derive the final ranking
(if an object lacks the candidate its score will be ‘0’). The original rankings for each object is
stored in the rank columns.

Slots

MS2QuantMeta Metadata from MS2Quant filled in by predictRespFactors.

setThreshold,setThresholdAnn,setAvgSpecificScores (sets workflow) A copy of the equally
named arguments that were passed when this object was created by generateCompounds.

origFGNames (sets workflow) The original (order of) names of the featureGroups object that
was used to create this object.

https://CRAN.R-project.org/package=rcdk
https://CRAN.R-project.org/package=rcdk
https://CRAN.R-project.org/package=rcdk

18 addFormulaScoring

S4 class hierarchy

• featureAnnotations

– compounds

* compoundsConsensus

* compoundsMF

* compoundsSet

· compoundsConsensusSet

* compoundsUnset

* compoundsSIRIUS

Source

Subscripting of formulae for plots generated by plotSpectrum is based on the chemistry2expression
function from the ReSOLUTION package.

Sets workflows

The compoundsSet class is applicable for sets workflows. This class is derived from compounds
and therefore largely follows the same user interface.

The following methods are specifically defined for sets workflows:

• All the methods from base class workflowStepSet.

• unset Converts the object data for a specified set into a ’non-set’ object (compoundsUnset),
which allows it to be used in ’regular’ workflows. Only the annotation results that are present
in the specified set are kept (based on the set consensus, see below for implications).

The following methods are changed or with new functionality:

• filter and the subset operator ([) Can be used to select data that is only present for selected
sets. Depending on the updateConsenus, both either operate on set consensus or original data
(see below for implications).

• annotatedPeakList Returns a combined annotation table with all sets.

• plotSpectrum Is able to highlight set specific mass peaks (perSet and mirror arguments).

• consensus Creates the algorithm consensus based on the original annotation data (see below
for implications). Then, like the sets workflow method for generateCompounds, a consensus
is made for all sets, which can be controlled with the setThreshold and setThresholdAnn
arguments. The candidate coverage among the different algorithms is calculated for each set
(e.g. coverage-positive column) and for all sets (coverage column), which is based on the
presence of a candidate in all the algorithms from all sets data. The consensus method for sets
workflow data supports the filterSets argument. This controls how the algorithm consensus
abundance filters (absMinAbundance/relMinAbundance) are applied: if filterSets=TRUE
then the minimum of all coverage set specific columns is used to obtain the algorithm abun-
dance. Otherwise the overall coverage column is used. For instance, consider a consensus
object to be generated from two objects generated by different algorithms (e.g. SIRIUS and
MetFrag), which both have a positive and negative set. Then, if a candidate occurs with both
algorithms for the positive mode set, but only with the first algorithm in the negative mode

https://github.com/schymane/ReSOLUTION

adduct-class 19

set, relMinAbundance=1 will remove the candidate if filterSets=TRUE (because the min-
imum relative algorithm abundance is ‘0.5’), while filterSets=FALSE will not remove the
candidate (because based on all sets data the candidate occurs in both algorithms).

• addFormulaScoring Adds the formula scorings to the original data and re-creates the anno-
tation set consensus (see below for implications).

Two types of annotation data are stored in a compoundsSet object:

1. Annotations that are produced from a consensus between set results (see generateCompounds).

2. The ’original’ annotation data per set, prior to when the set consensus was made. This in-
cludes candidates that were filtered out because of the thresholds set by setThreshold and
setThresholdAnn. However, when filter or subsetting ([) operations are performed, the
original data is also updated.

In most cases the first data is used. However, in a few cases the original annotation data is used
(as indicated above), for instance, to re-create the set consensus. It is important to realize that the
original annotation data may have additional candidates, and a newly created set consensus may
therefore have ’new’ candidates. For instance, when the object consists of the sets "positive" and
"negative" and setThreshold=1 was used to create it, then compounds[, sets = "positive",
updateConsensus = TRUE] may now have additional candidates, i.e. those that were not present in
the "negative" set and were previously removed due to the consensus threshold filter.

Note

The values ranges in the scoreLimits slot, which are used for normalization of scores, are based on
the original scorings when the compounds were generated (prior to employing the topMost filter
to generateCompounds).

References

Guha R (2007). “Chemical Informatics Functionality in R.” Journal of Statistical Software, 18(6).

See Also

The featureAnnotations base class for more relevant methods and generateCompounds.

adduct-class Generic adduct class

Description

Objects from this class are used to specify adduct information in an algorithm independent way.

20 adduct-class

Usage

adduct(...)

S4 method for signature 'adduct'
show(object)

S4 method for signature 'adduct'
as.character(x, format = "generic", err = TRUE)

Arguments

x, object An adduct object.

format A character that specifies the source format.
"generic" is an internally used generic format that supports full textual conver-
sion. Examples: "[M+H]+", "[2M+H]+", "[M+3H]3+".
"sirius" Is the format used by SIRIUS. It is similar to generic but does not
allow multiple charges/molecules. See the SIRIUS manual for more details.
"genform" and "metfrag" support fixed types of adducts which can be obtained
with the GenFormAdducts and MetFragAdducts functions, respectively.
"openms" is the format used by the MetaboliteAdductDecharger tool.
"cliquems" is the format used by cliqueMS.

err If TRUE then an error will be thrown if conversion fails, otherwise returns without
data.

... Any of add, sub, molMult and/or charge. See Slots.

Methods (by generic)

• show(adduct): Shows summary information for this object.

• as.character(adduct): Converts an adduct object to a specified character format.

Slots

add,sub A character with one or more formulas to add/subtract.

molMult How many times the original molecule is present in this molecule (e.g. for a dimer this
would be ‘2’). Default is ‘1’.

charge The final charge of the adduct (default ‘1’).

See Also

as.adduct for easy creation of adduct objects and adduct utilities for other adduct functionality.

Examples

adduct("H") # [M+H]+
adduct(sub = "H", charge = -1) # [M-H]-
adduct(add = "K", sub = "H2", charge = -1) # [M+K-H2]+
adduct(add = "H3", charge = 3) # [M+H3]3+

adduct-utils 21

adduct(add = "H", molMult = 2) # [2M+H]+

as.character(adduct("H")) # returns "[M+H]+"

adduct-utils Adduct utilities

Description

Several utility functions to work with adducts.

Usage

GenFormAdducts()

MetFragAdducts()

as.adduct(x, format = "generic", isPositive = NULL, charge = NULL, err = TRUE)

calculateIonFormula(formula, adduct)

calculateNeutralFormula(formula, adduct)

Arguments

x The object that should be converted. Should be a character string, a numeric
MetFrag adduct identifier (adduct_mode column obtained with MetFragAdducts)
or an adduct object (in which case no conversion occurs).

format A character that specifies the source format.
"generic" is an internally used generic format that supports full textual conver-
sion. Examples: "[M+H]+", "[2M+H]+", "[M+3H]3+".
"sirius" Is the format used by SIRIUS. It is similar to generic but does not
allow multiple charges/molecules. See the SIRIUS manual for more details.
"genform" and "metfrag" support fixed types of adducts which can be obtained
with the GenFormAdducts and MetFragAdducts functions, respectively.
"openms" is the format used by the MetaboliteAdductDecharger tool.
"cliquems" is the format used by cliqueMS.

isPositive A logical that specifies whether the adduct should be positive. Should only be
set when format="metfrag" and x is a numeric identifier.

charge The final charge. Only needs to be set when format="openms".

err If TRUE then an error will be thrown if conversion fails, otherwise returns without
data.

formula A character vector with formulae to convert.

adduct An adduct object (or something that can be converted to it with as.adduct).
Examples: "[M-H]-", "[M+Na]+".

22 analysis-information

Details

GenFormAdducts returns a table with information on adducts supported by GenForm.

MetFragAdducts returns a table with information on adducts supported by MetFrag.

as.adduct Converts an object in to an adduct object.

calculateIonFormula Converts one or more neutral formulae to adduct ions.

calculateNeutralFormula Converts one or more adduct ions to neutral formulae.

Examples

as.adduct("[M+H]+")
as.adduct("[M+H2]2+")
as.adduct("[2M+H]+")
as.adduct("[M-H]-")
as.adduct("+H", format = "genform")
as.adduct(1, isPositive = TRUE, format = "metfrag") # MetFrag adduct ID 1 --> returns [M+H]+

calculateIonFormula("C2H4O", "[M+H]+") # C2H5O
calculateNeutralFormula("C2H5O", "[M+H]+") # C2H4O

analysis-information Properties of sample analyses

Description

Properties for the sample analyses used in the workflow and utilities to automatically generate this
information.

Usage

generateAnalysisInfo(
paths,
groups = "",
blanks = "",
concs = NULL,
norm_concs = NULL,
formats = MSFileFormats()

)

generateAnalysisInfoFromEnviMass(path)

Arguments

paths A character vector containing one or more file paths that should be used for
finding the analyses.

analysis-information 23

groups, blanks An (optional) character vector containing replicate groups and blanks, respec-
tively (will be recycled). If groups is an empty character string ("") the analysis
name will be set as replicate group.

concs An optional numeric vector containing concentration values for each analysis.
Can be NA if unknown. If the length of concs is less than the number of analyses
the remainders will be set to NA. Set to NULL to not include concentration data.

norm_concs An optional numeric vector containing concentrations used for feature normal-
ization (see the Feature intensity normalization section in the feature-
Groups documentation). NA values are allowed for analyses that should not be
normalized (e.g. because no IS is present). If the length of norm_concs is less
than the number of analyses the remainders will be set to NA. Set to NULL to not
include normalization concentration data.

formats A character vector of analyses file types to consider. Analyses not present in
these formats will be ignored. For valid values see MSFileFormats.

path The path of the enviMass project.

Details

In patRoon a sample analysis, or simply analysis, refers to a single MS analysis file (sometimes
also called sample or file). The analysis information summarizes several properties for the analyses,
and is used in various steps throughout the workflow, such as findFeatures, averaging intensities
of feature groups and blank subtraction. This information should be in a data.frame, with the
following columns:

• path the full path to the directory of the analysis.

• analysis the file name without extension. Must be unique, even if the path is different.

• group name of replicate group. A replicate group is used to group analyses together that are
replicates of each other. Thus, the group column for all analyses considered to be belonging
to the same replicate group should have an equal (but unique) value. Used for e.g. averaging
and filter.

• blank all analyses within this replicate group are used by the featureGroups method of
filter for blank subtraction. Multiple entries can be entered by separation with a comma.

• conc a numeric value specifying the ’concentration’ for the analysis. This can be actually any
kind of numeric value such as exposure time, dilution factor or anything else which may be
used to form a linear relationship.

• norm_conc a numeric value specifying the normalization concentration for the analysis. See
the Feature intensity normalization section in the featureGroups documentation) for
more details.

Most workflows steps work with ‘mzXML’ and ‘mzML’ file formats. However, some algorithms only
support support one format (e.g. findFeaturesOpenMS, findFeaturesEnviPick) or a proprietary
format (findFeaturesBruker). To mix such algorithms in the same workflow, the analyses should
be present in all required formats within the same directory as specified by the path column.

Each analysis should only be specified once in the analysis information, even if multiple file formats
are available. The path and analysis columns are internally used by patRoon to automatically
find the path of analysis files with the required format.

24 analysisinfo-dataframe

The group column is mandatory and needs to be non-empty for each analysis. The blank column
should also be present, however, this may be empty ("") for analyses where no blank subtraction
should occur. The conc column is only required when obtaining regression information is desired
with the as.data.table method. Similarly, the norm_conc is only necessary for the normInts
method.

generateAnalysisInfo is an utility function that automatically generates a data.frame with anal-
ysis information. It scans the directories specified from the paths argument for analyses, and uses
this to automatically fill in the analysis and path columns. Furthermore, this function also cor-
rectly handles analyses which are available in multiple formats.

generateAnalysisInfoFromEnviMass loads analysis information from an enviMass project. Note:
this funtionality has only been tested with older versions of enviMass.

analysisinfo-dataframe

AnalysisInfo data.frame methods

Description

Various parsing and plotting functions for the analysisInfo data.frame.

Usage

S4 method for signature 'data.frame'
getTICs(obj, retentionRange = NULL, MSLevel = 1)

S4 method for signature 'data.frame'
getBPCs(obj, retentionRange = NULL, MSLevel = 1)

S4 method for signature 'data.frame'
plotTICs(

obj,
retentionRange = NULL,
MSLevel = 1,
retMin = FALSE,
title = NULL,
colourBy = c("none", "analyses", "rGroups"),
showLegend = TRUE,
xlim = NULL,
ylim = NULL,
...

)

S4 method for signature 'data.frame'
plotBPCs(
obj,
retentionRange = NULL,

analysisinfo-dataframe 25

MSLevel = 1,
retMin = FALSE,
title = NULL,
colourBy = c("none", "analyses", "rGroups"),
showLegend = TRUE,
xlim = NULL,
ylim = NULL,
...

)

Arguments

obj An analysisInfo data.frame object as obtained by generateAnalysisInfo func-
tion.

retentionRange Range of retention time (in seconds), m/z, respectively. Should be a numeric
vector with length of two containing the min/max values. The maximum can be
Inf to specify no maximum range. Set to NULL to skip this step.

MSLevel Integer vector with the ms levels (i.e., 1 for MS1 and 2 for MS2) to obtain traces.

retMin Plot retention time in minutes (instead of seconds).

title Character string used for title of the plot. If NULL a title will be automatically
generated.

colourBy Sets the automatic colour selection: "none" for a single colour or "analyses"/"rGroups"
for a distinct colour per analysis or analysis replicate group.

showLegend Plot a legend if TRUE.

xlim, ylim Sets the plot size limits used by plot. Set to NULL for automatic plot sizing.

... Further arguments passed to plot.

Functions

• getTICs(data.frame): Obtain the total ion chromatogram/s (TICs) of the analyses.

• getBPCs(data.frame): Obtain the base peak chromatogram/s (BPCs) of the analyses.

• plotTICs(data.frame): Plots the TICs of the analyses.

• plotBPCs(data.frame): Plots the BPCs of the analyses.

Author(s)

Ricardo Cunha, <cunha@iuta.de>

26 bruker-utils

bruker-utils Bruker DataAnalysis utilities

Description

Miscellaneous utility functions which interface with Bruker DataAnalysis

Usage

showDataAnalysis()

setDAMethod(anaInfo, method, close = TRUE)

revertDAAnalyses(anaInfo, close = TRUE, save = close)

recalibrarateDAFiles(anaInfo, close = TRUE, save = close)

getDACalibrationError(anaInfo)

addDAEIC(
analysis,
path,
mz,
mzWindow = 0.005,
ctype = "EIC",
mtype = "MS",
polarity = "both",
bgsubtr = FALSE,
fragpath = "",
name = NULL,
hideDA = TRUE,
close = FALSE,
save = close

)

addAllDAEICs(
fGroups,
mzWindow = 0.005,
ctype = "EIC",
bgsubtr = FALSE,
name = TRUE,
onlyPresent = TRUE,
hideDA = TRUE,
close = FALSE,
save = close

)

bruker-utils 27

Arguments

anaInfo Analysis info table

method The full path of the DataAnalysis method.

close, save If TRUE then Bruker files are closed and saved after processing with DataAnal-
ysis, respectively. Setting close=TRUE prevents that many analyses might be
opened simultaneously in DataAnalysis, which otherwise may use excessive
memory or become slow. By default save is TRUE when close is TRUE, which
is likely what you want as otherwise any processed data is lost.

analysis Analysis name (without file extension).

path path of the analysis.

mz m/z (Da) value used for the chromatographic trace (if applicable).

mzWindow m/z window (in Da) used for the chromatographic trace (if applicable).

ctype Type of the chromatographic trace. Valid options are: "EIC" (extracted ion
chromatogram), "TIC" (total ion chromatogram, only for addDAEIC) and "BPC"
(Base Peak Chromatogram).

mtype MS filter for chromatographic trace. Valid values are: "all", "MS", "MSMS",
"allMSMS" and "BBCID".

polarity Polarity filter for chromatographic trace. Valid values: "both", "positive"
and "negative".

bgsubtr If TRUE then background subtraction (’Spectral’ algorithm) will be performed.

fragpath Precursor m/z used for MS/MS traces ("" for none).

name For addDAEIC: the name for the chromatographic trace. For addAllEICs: TRUE
to automatically set EIC names. Set to NULL for none.

hideDA Hides DataAnalysis while adding the chromatographic trace (faster).

fGroups The featureGroups object for which EICs should be made.

onlyPresent If TRUE then EICs are only generated for analyses where the feature was de-
tected.

Details

These functions communicate directly with Bruker DataAnalysis to provide various functionality,
such as calibrating and exporting data and adding chromatographic traces. For this the RDCOM-
Client package is required to be installed.

showDataAnalysis makes a hidden DataAnalysis window visible again. Most functions using
DataAnalysis will hide the window during processing for efficiency reasons. If the window remains
hidden (e.g. because there was an error) this function can be used to make it visible again. This
function can also be used to start DataAnalysis if it is not running yet.

setDAMethod Sets a given DataAnalysis method (‘.m’ file) to a set of analyses. NOTE: as a
workaround for a bug in DataAnalysis, this function will save(!), close and re-open any analyses
that are already open prior to setting the new method. The close argument only controls whether
the file should be closed after setting the method (files are always saved).

revertDAAnalyses Reverts a given set of analyses to their unprocessed raw state.

28 caching

recalibrarateDAFiles Performs automatic mass recalibration of a given set of analyses. The
current method settings for each analyses will be used.

getDACalibrationError is used to obtain the standard deviation of the current mass calibration
(in ppm).

addDAEIC adds an Extracted Ion Chromatogram (EIC) or other chromatographic trace to a given
analysis which can be used directly with DataAnalysis.

addAllDAEICs adds Extracted Ion Chromatograms (EICs) for all features within a featureGroups
object.

Value

getDACalibrationError returns a data.frame with a column of all analyses (named analysis)
and their mass error (named error).

See Also

analysis-information

caching Utilities for caching of workflow data.

Description

Several utility functions for caching workflow data. The most important function is clearCache;
other functions are primarily for internal use.

Usage

makeHash(..., checkDT = TRUE)

makeFileHash(..., length = Inf)

loadCacheData(category, hashes, dbArg = NULL, simplify = TRUE, fixDTs = TRUE)

saveCacheData(category, data, hash, dbArg = NULL)

clearCache(what = NULL, file = NULL, vacuum = TRUE)

Arguments

... Arguments/objects to be used for hashing.

checkDT logical, set to TRUE with (a list with) data.tables to ensure reproducible
hashing. Otherwise can be set to FALSE to improve performance.

length Maximum file length to hash. Passed to digest.

category The category of the object to be cached.

checkFeatures 29

hashes A character with one more hashes (e.g. obtained with makeHash) of the objects
to be loaded.

dbArg Alternative connection to database. Default is NULL and uses the cache options
as defined by ‘patRoon.cache.fileName’. Mainly used internally to improve
performance.

simplify If TRUE and length(hashes)==1 then the returned data is returned directly,
otherwise the data is in a list.

fixDTs Should be TRUE if cached data consists of (nested) data.tables. Otherwise can
be FALSE to speed up loading.

data The object to be cached.

hash The hash string of the object to be cached (e.g. obtained with makeHash).

what This argument describes what should be done. When what = NULL this function
will list which tables are present along with an indication of their size (database
rows). If what = "all" then the complete file will be removed. Otherwise, what
should be a character string (a regular expression) that is used to match the table
names that should be removed.

file The cache file. If NULL then the value of the patRoon.cache.fileName option
is used.

vacuum If TRUE then the VACUUM operation will be run on the cache database to reduce
the file size. Setting this to FALSE might be handy to avoid long processing times
on large cache databases.

Details

makeHash Make a hash string of given arguments.

makeFileHash Generates a hash from the contents of one or more files.

loadCacheData Loads cached data from a database.

saveCacheData caches data in a database.

clearCache will either remove one or more tables within the cache sqlite database or simply wipe
the whole cache file. Removing tables will VACUUM the database (unless vacuum=FALSE), which may
take some time for large cache files.

checkFeatures Interactive GUI utilities to check workflow data

Description

These functions provide interactive utilities to explore and review workflow data using a shiny
graphical user interface (GUI). In addition, unsatisfactory data (e.g. noise identified as a feature and
unrelated feature groups in a component) can easily be selected for removal.

30 checkFeatures

Usage

checkFeatures(
fGroups,
session = "checked-features.yml",
EICParams = getDefEICParams(),
clearSession = FALSE

)

checkComponents(
components,
fGroups,
session = "checked-components.yml",
EICParams = getDefEICParams(),
clearSession = FALSE

)

S4 method for signature 'components'
checkComponents(
components,
fGroups,
session = "checked-components.yml",
EICParams = getDefEICParams(),
clearSession = FALSE

)

importCheckFeaturesSession(
sessionIn,
sessionOut,
fGroups,
rtWindow = 6,
mzWindow = 0.002,
overWrite = FALSE

)

S4 method for signature 'featureGroups'
checkFeatures(
fGroups,
session = "checked-features.yml",
EICParams = getDefEICParams(),
clearSession = FALSE

)

getMCTrainData(fGroups, session)

predictCheckFeaturesSession(fGroups, session, model = NULL, overWrite = FALSE)

checkFeatures 31

Arguments

fGroups A featureGroups object.
This should be the ’new’ object for importCheckFeaturesSession for which
the session needs to be imported.

session The session file name.

EICParams A named list with parameters used for extracted ion chromatogram (EIC) cre-
ation. See the EIC parameters documentation for more details.

clearSession If TRUE the session will be completely cleared before starting the GUI. This
effectively removes all selections for data removal.

components The components to be checked.
sessionIn, sessionOut

The file names for the input and output sessions.

rtWindow The retention time window (seconds) used to relate ’old’ with ’new’ feature
groups.

mzWindow The m/z window (in Da) used to relate ’old’ with ’new’ feature groups.

overWrite Set to TRUE to overwrite the output session file if it already exists. If FALSE, the
function will stop with an error message.

model The model that was created with MetaClean and that should be used to predict
pass/fail data. If NULL, the example model of the MetaCleanData package is
used.

Details

The data selected for removal is stored in sessions. These are ‘YAML’ files to allow easy external
manipulation. The sessions can be used to restore the selections that were made for data removal
when the GUI tool is executed again. Furthermore, functionality is provided to import and export
sessions. To actually remove the data the filter method should be used with the session file as
input.

checkComponents is used to review components and their feature groups contained within. A
typical use case is to verify that peaks from features that were annotated as related adducts and/or
isotopes are correctly aligned.

importCheckFeaturesSession is used to import a session file that was generated from a different
featureGroups object. This is useful to avoid re-doing manual interpretation of chromatographic
peaks when, for instance, feature group data is re-created with different parameters.

checkFeatures is used to review chromatographic information for feature groups. Its main purpose
is to assist in reviewing the quality of detected feature (groups) and easily select unwanted data such
as features with poor peak shapes or noise.

getMCTrainData converts a session created by checkFeatures to a data.frame that can be used
by the MetaClean to train a new model. The output format is comparable to that from getPeakQualityMetrics.

predictCheckFeaturesSession Uses ML data from MetaClean to predict the quality (Pass/Fail)
of feature group data, and converts this to a session which can be reviewed with checkFeatures
and used to remove unwanted feature groups by filter.

32 comparison

Value

A dataframe with the class predictions as well as the associated probabilities for each EIC as re-
turned by the MetaClean::getPredicitons function. The dataframe has the four columns: EIC,
Pred_Class, Pred_Prob_Pass, Pred_Prob_Fail.

Note

The topMost and topMostByRGroup EIC parameters (EICParams) are ignored.

checkComponents: Some componentization algorithms (e.g. generateComponentsNontarget and
generateComponentsTPs) may output components where the same feature group in a component
is present multiple times, for instance, when multiple TPs are matched to the same feature group. If
such a feature group is selected for removal, then all of its result in the component will be marked
for removal.

getMCTrainData only uses session data for selected feature groups. Selected features for removal
are ignored, as this is not supported by MetaClean.

References

Chetnik K, Petrick L, Pandey G (2020). “MetaClean: a machine learning-based classifier for
reduced false positive peak detection in untargeted LC-MS metabolomics data.” Metabolomics,
16(11). doi:10.1007/s11306020017383.

comparison Comparing feature groups

Description

Functionality to compare feature groups and make a consensus.

Usage

comparison(..., groupAlgo, groupArgs = list(rtalign = FALSE))

S4 method for signature 'featureGroups'
comparison(..., groupAlgo, groupArgs = list(rtalign = FALSE))

S4 method for signature 'featureGroupsComparison,missing'
plot(x, retMin = FALSE, ...)

S4 method for signature 'featureGroupsComparison'
plotVenn(obj, which = NULL, ...)

S4 method for signature 'featureGroupsComparison'
plotUpSet(obj, which = NULL, ...)

S4 method for signature 'featureGroupsComparison'

https://doi.org/10.1007/s11306-020-01738-3

comparison 33

plotChord(obj, addSelfLinks = FALSE, addRetMzPlots = TRUE, ...)

S4 method for signature 'featureGroupsComparison'
consensus(
obj,
absMinAbundance = NULL,
relMinAbundance = NULL,
uniqueFrom = NULL,
uniqueOuter = FALSE,
verifyAnaInfo = TRUE

)

S4 method for signature 'featureGroupsSet'
comparison(..., groupAlgo, groupArgs = list(rtalign = FALSE))

S4 method for signature 'featureGroupsComparisonSet'
consensus(obj, ...)

Arguments

... For comparison: featureGroups objects that should be compared. If the argu-
ments are named (e.g. myGroups = fGroups) then these are used for labelling,
otherwise objects are automatically labelled by their algorithm.
For plot, plotVenn, plotChord: further options passed to plot, VennDia-
gram plotting functions (e.g. draw.pairwise.venn) and chordDiagram re-
spectively.
For plotUpSet: any further arguments passed to the plotUpSet method defined
for featureGroups.

groupAlgo The feature grouping algorithm that should be used for grouping pseudo
features (see details). Valid values are: "xcms", xcms3, kpic2 or "openms".

groupArgs A list containing further parameters for feature grouping.

x, obj The featureGroupsComparison object.

retMin If TRUE retention times are plotted as minutes (seconds otherwise).

which A character vector specifying one or more labels of compared feature groups.
For plotVenn: if NULL then all compared groups are used.

addSelfLinks If TRUE then ’self-links’ are added which represent non-shared data.

addRetMzPlots Set to TRUE to enable m/z vs retention time scatter plots.
absMinAbundance, relMinAbundance

Minimum absolute or relative (‘0-1’) abundance across objects for a result to be
kept. For instance, relMinAbundance=0.5 means that a result should be present
in at least half of the number of compared objects. Set to ‘NULL’ to ignore and
keep all results. Limits cannot be set when uniqueFrom is not NULL.

uniqueFrom Set this argument to only retain feature groups that are unique within one or
more of the objects for which the consensus is made. Selection is done by setting
the value of uniqueFrom to a logical (values are recycled), numeric (select by
index) or a character (as obtained with algorithm(obj)). For logical and

34 comparison

numeric values the order corresponds to the order of the objects given for the
consensus. Set to NULL to ignore.

uniqueOuter If uniqueFrom is not NULL and if uniqueOuter=TRUE: only retain data that are
also unique between objects specified in uniqueFrom.

verifyAnaInfo If FALSE then the analysis information is not verified to be equal for all compared
objects. This is mainly only useful when the data is the same but stored in
different formats (e.g. mzXML/mzML).

Details

Feature groups objects originating from differing feature finding and/or grouping algorithms (or
their parameters) may be compared to assess their output and generate a consensus.

The comparison method generates a featureGroupsComparison object from given feature groups
objects, which in turn may be used for (visually) comparing presence of feature groups and generat-
ing a consensus. Internally, this function will collapse each feature groups object to pseudo features
objects by averaging their retention times, m/z values and intensities, where each original feature
groups object becomes an ’analysis’. All pseudo features are then grouped using regular feature
grouping algorithms so that a comparison can be made.

plot generates an m/z vs retention time plot.

plotVenn plots a Venn diagram outlining unique and shared feature groups between up to five
compared feature groups.

plotUpSet plots an UpSet diagram outlining unique and shared feature groups.

plotChord plots a chord diagram to visualize the distribution of feature groups.

consensus combines all compared feature groups and averages their retention, m/z and intensity
data. Not yet supported for sets workflows.

Value

comparison returns a featureGroupsComparison object.

plotVenn (invisibly) returns a list with the following fields:

• gList the gList object that was returned by the utilized VennDiagram plotting function.

• areas The total area for each plotted group.

• intersectionCounts The number of intersections between groups.

The order for the areas and intersectionCounts fields is the same as the parameter order from
the used plotting function (see e.g. draw.pairwise.venn and draw.triple.venn).

consensus returns a featureGroups object with a consensus from the compared feature groups.

componentsClust-class 35

componentsClust-class Base class for components that are based on hierarchical clustered
data.

Description

This base class is derived from components and is used to store components resulting from hi-
erarchical clustering information, for instance, generated by generateComponentsIntClust and
generateComponentsSpecClust.

Usage

S4 method for signature 'componentsClust'
delete(obj, ...)

S4 method for signature 'componentsClust'
clusters(obj)

S4 method for signature 'componentsClust'
cutClusters(obj)

S4 method for signature 'componentsClust'
clusterProperties(obj)

S4 method for signature 'componentsClust'
treeCut(obj, k = NULL, h = NULL)

S4 method for signature 'componentsClust'
treeCutDynamic(obj, maxTreeHeight, deepSplit, minModuleSize)

S4 method for signature 'componentsClust,missing'
plot(

x,
pal = "Paired",
numericLabels = TRUE,
colourBranches = length(x) < 50,
showLegend = length(x) < 20,
...

)

S4 method for signature 'componentsClust'
plotSilhouettes(obj, kSeq, pch = 16, type = "b", ...)

Arguments

... Further options passed to plot.dendrogram (plot) or plot (plotSilhouettes).

36 componentsClust-class

k, h Desired number of clusters or tree height to be used for cutting the dendrogram,
respectively. One or the other must be specified. Analogous to cutree.

maxTreeHeight, deepSplit, minModuleSize
Arguments used by cutreeDynamicTree.

x, obj A componentsClust (derived) object.

pal Colour palette to be used from RColorBrewer.

numericLabels Set to TRUE to label with numeric indices instead of (long) feature group names.

colourBranches Whether branches from cut clusters (and their labels) should be coloured. Might
be slow with large numbers of clusters, hence, the default is only TRUE when this
is not the case.

showLegend If TRUE and colourBranches is also TRUE then a legend will be shown which
outlines cluster numbers and their colours. By default TRUE for small amount of
clusters to avoid overflowing the plot.

kSeq An integer vector containing the sequence that should be used for average sil-
houette width calculation.

pch, type Passed to plot.

Methods (by generic)

• clusters(componentsClust): Accessor method to the clust slot, which was generated by
hclust.

• cutClusters(componentsClust): Accessor method to the cutClusters slot. Returns a
vector with cluster membership for each candidate (format as cutree).

• clusterProperties(componentsClust): Returns a list with properties on how the cluster-
ing was performed.

• treeCut(componentsClust): Manually (re-)cut the dendrogram.

• treeCutDynamic(componentsClust): Automatically (re-)cut the dendrogram using the cutreeDynamicTree
function from dynamicTreeCut.

• plot(x = componentsClust, y = missing): generates a dendrogram from a given cluster
object and optionally highlights resulting branches when the cluster is cut.

• plotSilhouettes(componentsClust): Plots the average silhouette width when the clusters
are cut by a sequence of k numbers. The k value with the highest value (marked in the plot)
may be considered as the optimal number of clusters.

Slots

distm Distance matrix that was used for clustering (obtained with daisy).

clust Object returned by hclust.

cutClusters A list with assigned clusters (same format as what cutree returns).

gInfo The groupInfo of the feature groups object that was used.

properties A list containing general properties and parameters used for clustering.

altered Set to TRUE if the object was altered (e.g. filtered) after its creation.

componentsNT-class 37

S4 class hierarchy

• components

– componentsClust

* componentsIntClust

* componentsSpecClust

Note

The intensity values for components (used by plotSpectrum) are set to a dummy value (1) as no
single intensity value exists for this kind of components.

When the object is altered (e.g. by filtering or subsetting it), methods that need the original clustered
data such as plotting methods do not work anymore and stop with an error.

References

Schollee JE, Bourgin M, von Gunten U, McArdell CS, Hollender J (2018). “Non-target screening
to trace ozonation transformation products in a wastewater treatment train including different post-
treatments.” Water Research, 142, 267–278. doi:10.1016/j.watres.2018.05.045.

See Also

components and generateComponents

componentsNT-class Components class for homologous series.

Description

This class is derived from components and is used to store results from unsupervised homolog
detection with the nontarget package.

Usage

S4 method for signature 'componentsNT'
plotGraph(obj, onlyLinked = TRUE, width = NULL, height = NULL)

S4 method for signature 'componentsNTSet'
plotGraph(obj, onlyLinked = TRUE, set, ...)

S4 method for signature 'componentsNTSet'
unset(obj, set)

https://doi.org/10.1016/j.watres.2018.05.045

38 componentsNT-class

Arguments

obj The componentsNT object to plot.

onlyLinked If TRUE then only components with links are plotted.

width, height Passed to visNetwork.

set (sets workflow) The name of the set.

... (sets workflow) Further arguments passed to the non-sets workflow method.

Details

Objects from this class are generated by generateComponentsNontarget

Value

plotGraph returns the result of visNetwork.

Methods (by generic)

• plotGraph(componentsNT): Plots an interactive network graph for linked homologous series
(i.e. series with (partial) overlap which could not be merged). The resulting graph can be
browsed interactively and allows quick inspection of series which may be related. The graph
is constructed with the igraph package and rendered with visNetwork.

Slots

homol A list with homol objects for each replicate group as returned by homol.search

Sets workflows

The componentsNTSet class is applicable for sets workflows. This class is derived from componentsNT
and therefore largely follows the same user interface.

The following methods are specifically defined for sets workflows:

• All the methods from base class workflowStepSet.

• unset Converts the object data for a specified set into a ’non-set’ object (componentsNTUnset),
which allows it to be used in ’regular’ workflows. Only the components in the specified
set are kept. Furthermore, the component names are restored to non-set specific names (see
generateComponents for more details).

The following methods are changed or with new functionality:

• plotGraph Currently can only create graph networks from one set (specified by the set argu-
ment).

Note that the componentsNTSet class does not have a homol slot. Instead, the setObjects method
can be used to access this data for a specific set.

componentsSpecClust-class 39

References

Loos M, Singer H (2017). “Nontargeted homologue series extraction from hyphenated high resolu-
tion mass spectrometry data.” Journal of Cheminformatics, 9(1). doi:10.1186/s133210170197z.

Loos M, Gerber C, Corona F, Hollender J, Singer H (2015). “Accelerated Isotope Fine Structure
Calculation Using Pruned Transition Trees.” Analytical Chemistry, 87(11), 5738-5744. https:
//pubs.acs.org/doi/abs/10.1021/acs.analchem.5b00941.

Csardi G, Nepusz T (2006). “The igraph software package for complex network research.” Inter-
Journal, Complex Systems, 1695. https://igraph.org.

Csárdi G, Nepusz T, Traag V, Horvát S, Zanini F, Noom D, Müller K (2025). igraph: Network
Analysis and Visualization in R. doi:10.5281/zenodo.7682609, R package version 2.1.4, https:
//CRAN.R-project.org/package=igraph.

See Also

components and generateComponents

componentsSpecClust-class

Components based on MS/MS similarity.

Description

This class is derived from componentsClust and is used to store components from feature groups
that were clustered based on their MS/MS similarities.

Details

Objects from this class are generated by generateComponentsSpecClust

S4 class hierarchy

• componentsClust

– componentsSpecClust

Note

When the object is altered (e.g. by filtering or subsetting it), methods that need the original clustered
data such as plotting methods do not work anymore and stop with an error.

See Also

componentsClust for other relevant methods and generateComponents

https://doi.org/10.1186/s13321-017-0197-z
https://pubs.acs.org/doi/abs/10.1021/acs.analchem.5b00941
https://pubs.acs.org/doi/abs/10.1021/acs.analchem.5b00941
https://igraph.org
https://doi.org/10.5281/zenodo.7682609
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=igraph

40 componentsTPs-class

componentsTPs-class Components based on parent and transformation product (TP) link-
age.

Description

This class is derived from components and is used to store components that result from linking
feature groups that are (predicted to be) parents with feature groups that (are predicted to be) trans-
formation products. For more details, see generateComponentsTPs.

Usage

S4 method for signature 'componentsTPs'
as.data.table(x)

S4 method for signature 'componentsTPs'
filter(

obj,
...,
retDirMatch = FALSE,
minSpecSim = NULL,
minSpecSimPrec = NULL,
minSpecSimBoth = NULL,
minFragMatches = NULL,
minNLMatches = NULL,
formulas = NULL,
verbose = TRUE,
negate = FALSE

)

S4 method for signature 'componentsTPs'
plotGraph(obj, onlyLinked = TRUE, width = NULL, height = NULL)

Arguments

x, obj A componentsTPs object.

..., verbose Further arguments passed to the base filter method.

retDirMatch If set to TRUE, only keep TPs for which the retention time direction (retDir,
see Details in componentsTPs) matches with the observed direction. TPs will
never be removed if the expected/observed direction is ‘0’ (i.e. unknown or not
significantly different than the parent).

minSpecSim, minSpecSimPrec, minSpecSimBoth
The minimum spectral similarity of a TP compared to its parent (‘0-1’). The
minSpecSimPrec and minSpecSimBoth apply to binned data that is shifted with
the "precursor" and "both" method, respectively (see MS spectral similarity
parameters for more details). Set to NULL to ignore.

componentsTPs-class 41

minFragMatches, minNLMatches
Minimum number of parent/TP fragment and neutral loss matches, respectively.
Set to NULL to ignore. See the Linking parents and transformation products
section in generateComponentsTPs for more details.

formulas A formulas object. The formula annotation data in this object is to verify
if elemental additions/subtractions from metabolic logic reactions are possible
(hence, it only works with data from generateTPsLogic). To verify elemental
additions, only TPs with at least one candidate formula that has these elements
are kept. Similarly, for elemental subtractions, any of the parent candidate for-
mulae must contain the subtraction elements. Note that TPs are currently not
filtered if either the parent or the TP has no formula annotations. Set to NULL to
ignore.

negate If TRUE then filters are applied in opposite manner.

onlyLinked If TRUE then only components with links are plotted.

width, height Passed to visNetwork.

Value

filter returns a filtered componentsTPs object.

plotGraph returns the result of visNetwork.

Methods (by generic)

• as.data.table(componentsTPs): Returns all component data as a data.table.

• filter(componentsTPs): Provides various rule based filtering options to clean and prioritize
TP data.

• plotGraph(componentsTPs): Plots an interactive network graph for linked components.
Components are linked with each other if one or more transformation products overlap. The
graph is constructed with the igraph package and rendered with visNetwork.

Slots

fromTPs A logical that is TRUE when the componentization was performed with transformationProducts
data.

S4 class hierarchy

• components

– componentsTPs

Note

The intensity values for components (used by plotSpectrum) are set to a dummy value (1) as no
single intensity value exists for this kind of components.

42 componentTable

References

Csardi G, Nepusz T (2006). “The igraph software package for complex network research.” Inter-
Journal, Complex Systems, 1695. https://igraph.org.

Csárdi G, Nepusz T, Traag V, Horvát S, Zanini F, Noom D, Müller K (2025). igraph: Network
Analysis and Visualization in R. doi:10.5281/zenodo.7682609, R package version 2.1.4, https:
//CRAN.R-project.org/package=igraph.

See Also

components for other relevant methods and generateComponents

componentTable Component class

Description

Contains data for feature groups that are related in some way. These components commonly include
adducts, isotopes and homologues.

Usage

componentTable(obj)

componentInfo(obj)

findFGroup(obj, fGroup)

S4 method for signature 'components'
componentTable(obj)

S4 method for signature 'components'
componentInfo(obj)

S4 method for signature 'components'
groupNames(obj)

S4 method for signature 'components'
length(x)

S4 method for signature 'components'
names(x)

S4 method for signature 'components'
show(object)

S4 method for signature 'components,ANY,ANY,missing'

https://igraph.org
https://doi.org/10.5281/zenodo.7682609
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=igraph

componentTable 43

x[i, j, ..., drop = TRUE]

S4 method for signature 'components,ANY,ANY'
x[[i, j]]

S4 method for signature 'components'
x$name

S4 method for signature 'components'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'components'
as.data.table(x)

S4 method for signature 'components'
filter(
obj,
size = NULL,
adducts = NULL,
isotopes = NULL,
rtIncrement = NULL,
mzIncrement = NULL,
checkComponentsSession = NULL,
negate = FALSE,
verbose = TRUE

)

S4 method for signature 'components'
findFGroup(obj, fGroup)

S4 method for signature 'components'
plotSpectrum(obj, index, markFGroup = NULL, xlim = NULL, ylim = NULL, ...)

S4 method for signature 'components'
plotChroms(obj, index, fGroups, EICParams = getDefEICParams(rtWindow = 5), ...)

S4 method for signature 'components'
consensus(obj, ...)

S4 method for signature 'componentsFeatures'
show(object)

S4 method for signature 'componentsSet'
show(object)

S4 method for signature 'componentsSet,ANY,ANY,missing'
x[i, j, ..., sets = NULL, drop = TRUE]

44 componentTable

S4 method for signature 'componentsSet'
filter(obj, ..., negate = FALSE, sets = NULL)

S4 method for signature 'componentsSet'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'componentsSet'
consensus(obj, ...)

S4 method for signature 'componentsSet'
unset(obj, set)

Arguments

obj, object, x The component object.
fGroup The name (thus a character) of the feature group that should be searched for.
i, j For [/[[: A numeric or character value which is used to select components/feature

groups by their index or name, respectively (for the order/names see names()/groupNames()).

For [: Can also be logical to perform logical selection (similar to regular vec-
tors). If missing all components/feature groups are selected.

For [[: should be a scalar value. j is optional.

For delete: The data to remove from. i are the components as numeric in-
dex, logical or character, j the feature groups as numeric index/logical (relative
to component) or character. If either is NULL then data for all is removed. j may
also be a function: it will be called for each component, with the component
(a data.table), the component name and any other arguments passed as ...
to delete. The return value of this function specifies the feature groups to be
removed (same format as j).

... For delete: passed to the function specified as j.
For plotChroms: Further (optional) arguments passed to the plotChroms method
for the featureGroups class. Note that the colourBy, showPeakArea, showFGroupRect
and topMost arguments cannot be set as these are set by this method.
For plotSpectrum: Further arguments passed to plot.
For consensus: components objects that should be used to generate the con-
sensus.
For sets workflow methods: further arguments passed to the base components
method.

drop ignored.
name The component name (partially matched).
size Should be a two sized vector with the minimum/maximum size of a component.

Set to NULL to ignore.
adducts Remove any feature groups within components that do not match given adduct

rules. If adducts is a logical then only results are kept when an adduct is as-
signed (adducts=TRUE) or not assigned (adducts=FALSE). Otherwise, if adducts

componentTable 45

contains one or more adduct objects (or something that can be converted to it
with as.adduct) then only results are kept that match the given adducts. Set to
NULL to ignore this filter.

isotopes Only keep results that match a given isotope rule. If isotopes is a logical then
only results are kept with (isotopes=TRUE) or without (isotopes=FALSE) iso-
tope assignment. Otherwise isotopes should be a numeric vector with isotope
identifiers to keep (e.g. ‘0’ for monoisotopic results, ‘1’ for ‘M+1’ results etc.).
Set to NULL to ignore this filter.

rtIncrement, mzIncrement
Should be a two sized vector with the minimum/maximum retention or mz in-
crement of a homologous series. Set to NULL to ignore.

checkComponentsSession

If set then components and/or feature groups are removed that were selected
for removal (see check-GUI and the checkComponents function). The value of
checkComponentsSession should either by a path to the session file or TRUE,
in which case the default session file name is used. If negate=TRUE then all
non-selected data is removed instead.

negate If TRUE then filters are applied in opposite manner.

verbose If set to FALSE then no text output is shown.

index The index of the component. Can be a numeric index or a character with its
name.

markFGroup If specified (i.e. not NULL) this argument can be used to mark a feature group
in the plotted spectrum. The value should be a character with the name of the
feature group. Setting this to NULL will not mark any peak.

xlim, ylim Sets the plot size limits used by plot. Set to NULL for automatic plot sizing.

fGroups The featureGroups object that was used to generate the components.

EICParams A named list with parameters used for extracted ion chromatogram (EIC) cre-
ation. See the EIC parameters documentation for more details.

sets (sets workflow) A character with name(s) of the sets to keep (or remove if
negate=TRUE).

set (sets workflow) The name of the set.

Details

components objects are obtained from generateComponents.

Value

delete returns the object for which the specified data was removed.

consensus returns a components object that is produced by merging multiple specified components
objects.

46 componentTable

Methods (by generic)

• componentTable(components): Accessor method for the components slot of a components
class. Each component is stored as a data.table.

• componentInfo(components): Accessor method for the componentInfo slot of a components
class.

• groupNames(components): returns a character vector with the names of the feature groups
for which data is present in this object.

• length(components): Obtain total number of components.

• names(components): Obtain the names of all components.

• show(components): Show summary information for this object.

• x[i: Subset on components/feature groups.

• x[[i: Extracts a component table, optionally filtered by a feature group.

• $: Extracts a component table by component name.

• delete(components): Completely deletes specified (parts of) components.

• as.data.table(components): Returns all component data in a table.

• filter(components): Provides rule based filtering for components.

• findFGroup(components): Returns the component id(s) to which a feature group belongs.

• plotSpectrum(components): Plot a pseudo mass spectrum for a single component.

• plotChroms(components): Plot an extracted ion chromatogram (EIC) for all feature groups
within a single component.

• consensus(components): Generates a consensus from multiple components objects. At this
point results are simply combined and no attempt is made to merge similar components.

Slots

components List of all components in this object. Use the componentTable method for access.

componentInfo A data.table containing general information for each component. Use the componentInfo
method for access.

S4 class hierarchy

• workflowStep

– components

* componentsCamera

* componentsFeatures

· componentsCliqueMS

· componentsOpenMS

* componentsClust

· componentsIntClust

· componentsSpecClust

* componentsSet

· componentsNTSet

compoundsCluster-class 47

* componentsUnset

* componentsNT

· componentsNTUnset

* componentsRC

* componentsTPs

Sets workflows

The componentsSet class is applicable for sets workflows. This class is derived from components
and therefore largely follows the same user interface.

The following methods are specifically defined for sets workflows:

• All the methods from base class workflowStepSet.

• unset Converts the object data for a specified set into a ’non-set’ object (componentsUnset),
which allows it to be used in ’regular’ workflows. Only the components in the specified set
are kept.

The following methods are changed or with new functionality:

• filter and the subset operator ([) Can be used to select components that are only present for
selected sets.

Note

filter Applies only those filters for which a component has data available. For instance, filter-
ing by adduct will only filter any results within a component if that component contains adduct
information.

For plotChroms: The topMost and topMostByRGroup EIC parameters are ignored unless the com-
ponents are from homologous series.

See Also

generateComponents

compoundsCluster-class

Compounds cluster class

Description

Objects from this class are used to store hierarchical clustering data of candidate structures within
compounds objects.

48 compoundsCluster-class

Usage

S4 method for signature 'compoundsCluster'
clusters(obj)

S4 method for signature 'compoundsCluster'
cutClusters(obj)

S4 method for signature 'compoundsCluster'
clusterProperties(obj)

S4 method for signature 'compoundsCluster'
groupNames(obj)

S4 method for signature 'compoundsCluster'
length(x)

S4 method for signature 'compoundsCluster'
lengths(x, use.names = TRUE)

S4 method for signature 'compoundsCluster'
show(object)

S4 method for signature 'compoundsCluster,ANY,missing,missing'
x[i, j, ..., drop = TRUE]

S4 method for signature 'compoundsCluster'
treeCut(obj, k = NULL, h = NULL, groupName)

S4 method for signature 'compoundsCluster'
treeCutDynamic(obj, maxTreeHeight, deepSplit, minModuleSize, groupName)

S4 method for signature 'compoundsCluster,missing'
plot(

x,
...,
groupName,
pal = "Paired",
colourBranches = lengths(x)[groupName] < 50,
showLegend = lengths(x)[groupName] < 20

)

S4 method for signature 'compoundsCluster'
getMCS(obj, groupName, cluster)

S4 method for signature 'compoundsCluster'
plotStructure(
obj,
groupName,

compoundsCluster-class 49

cluster,
width = 500,
height = 500,
withTitle = TRUE

)

S4 method for signature 'compoundsCluster'
plotSilhouettes(obj, kSeq, groupName, pch = 16, type = "b", ...)

Arguments

obj, x, object A compoundsCluster object.

use.names A logical value specifying whether the returned vector should be named with
the feature group names.

i For [: A numeric or character value which is used to select feature groups by
their index or name, respectively (for the order/names see groupNames()). Can
also be logical to perform logical selection (similar to regular vectors). If miss-
ing all feature groups are selected.

... Further arguments passed directly to the plotting function (plot or plot.dendrogram).

drop, j ignored.

k, h Desired number of clusters or tree height to be used for cutting the dendrogram,
respecitively. One or the other must be specified. Analogous to cutree.

groupName A character specifying the feature group name.
maxTreeHeight, deepSplit, minModuleSize

Arguments used by cutreeDynamicTree.

pal Colour palette to be used from RColorBrewer.

colourBranches Whether branches from cut clusters (and their labels) should be coloured. Might
be slow with large numbers of clusters, hence, the default is only TRUE when this
is not the case.

showLegend If TRUE and colourBranches is also TRUE then a legend will be shown which
outlines cluster numbers and their colours. By default TRUE for small amount of
clusters to avoid overflowing the plot.

cluster A numeric value specifying the cluster.

width, height The dimensions (in pixels) of the raster image that should be plotted.

withTitle A logical value specifying whether a title should be added.

kSeq An integer vector containing the sequence that should be used for average sil-
houette width calculation.

pch, type Passed to plot.

Details

Objects from this type are returned by the compounds method for makeHCluster.

50 compoundsCluster-class

Value

cutTree and cutTreeDynamic return the modified compoundsCluster object.

getMCS returns an rcdk molecule object (IAtomContainer).

Methods (by generic)

• clusters(compoundsCluster): Accessor method to the clusters slot. Returns a list that
contains for each feature group an object as returned by hclust.

• cutClusters(compoundsCluster): Accessor method to the cutClusters slot. Returns a
list that contains for each feature group a vector with cluster membership for each candidate
(format as cutree).

• clusterProperties(compoundsCluster): Returns a list with properties on how the cluster-
ing was performed.

• groupNames(compoundsCluster): returns a character vector with the names of the feature
groups for which data is present in this object.

• length(compoundsCluster): Returns the total number of clusters.

• lengths(compoundsCluster): Returns a vector with the number of clusters per feature
group.

• show(compoundsCluster): Show summary information for this object.

• x[i: Subset on feature groups.

• treeCut(compoundsCluster): Manually (re-)cut a dendrogram that was generated for a fea-
ture group.

• treeCutDynamic(compoundsCluster): Automatically (re-)cut a dendrogram that was gen-
erated for a feature group using the cutreeDynamicTree function from dynamicTreeCut.

• plot(x = compoundsCluster, y = missing): Plot the dendrogram for clustered compounds
of a feature group. Clusters are highlighted using dendextend.

• getMCS(compoundsCluster): Calculates the maximum common substructure (MCS) for all
candidate structures within a specified cluster. This method uses the get.mcs function from
rcdk.

• plotStructure(compoundsCluster): Plots the maximum common substructure (MCS) for
all candidate structures within a specified cluster.

• plotSilhouettes(compoundsCluster): Plots the average silhouette width when the clusters
are cut by a sequence of k numbers. The k value with the highest value (marked in the plot)
may be considered as the optimal number of clusters.

Slots

clusters A list with hclust objects for each feature group.

dists A list with distance matrices for each feature group.

SMILES A list containing a vector with SMILES for all candidate structures per feature group.

cutClusters A list with assigned clusters for all candidates per feature group (same format as
what cutree returns).

properties A list containing general properties and parameters used for clustering.

https://CRAN.R-project.org/package=rcdk
https://CRAN.R-project.org/package=dendextend
https://CRAN.R-project.org/package=rcdk

compoundScorings 51

compoundScorings Scorings terms for compound candidates

Description

Returns an overview of scorings may be applied to rank candidate compounds.

Usage

compoundScorings(
algorithm = NULL,
database = NULL,
includeSuspectLists = TRUE,
onlyDefault = FALSE,
includeNoDB = TRUE

)

Arguments

algorithm The algorithm: "metfrag" or "sirius". Set to NULL to return all scorings.

database The database for which results should be returned (e.g. "pubchem"). Set to NULL
to return all scorings.

includeSuspectLists, onlyDefault, includeNoDB
A logical specifying whether scoring terms related to suspect lists, default scor-
ing terms and non-database specific scoring terms should be included in the
output, respectively.

Value

A data.frame with information on which scoring terms are used, what their algorithm specific
name is and other information such as to which database they apply and short remarks.

See Also

generateCompounds

compoundsSIRIUS-class Compounds class for SIRIUS results.

Description

This class is derived from compounds and contains additional specific SIRIUS data.

Details

Objects from this class are generated by generateCompoundsSIRIUS

52 convertMSFiles

Slots

fingerprints A list with for each feature group result a data.table containing fingerprints
obtained with CSI:FingerID.

S4 class hierarchy

• compounds

– compoundsSIRIUS

References

Duhrkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu
J, Bocker S (2019). “SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite struc-
ture information.” Nature Methods, 16(4), 299–302. doi:10.1038/s4159201903448.

Duhrkop K, Bocker S (2015). “Fragmentation Trees Reloaded.” In Przytycka TM (ed.), Research
in Computational Molecular Biology, 65–79. ISBN 978-3-319-16706-0.

Duhrkop K, Shen H, Meusel M, Rousu J, Bocker S (2015). “Searching molecular structure databases
with tandem mass spectra using CSI:FingerID.” Proceedings of the National Academy of Sciences,
112(41), 12580–12585. doi:10.1073/pnas.1509788112.

Bocker S, Letzel MC, Liptak Z, Pervukhin A (2008). “SIRIUS: decomposing isotope patterns
for metabolite identification.” Bioinformatics, 25(2), 218–224. doi:10.1093/bioinformatics/btn603.

See Also

compounds and generateCompoundsSIRIUS

convertMSFiles MS data conversion

Description

Conversion of MS analysis files between several open and closed data formats.

Usage

MSFileFormats(algorithm = "pwiz", vendor = FALSE)

convertMSFiles(
files = NULL,
outPath = NULL,
dirs = TRUE,
anaInfo = NULL,
from = NULL,
to = "mzML",

https://doi.org/10.1038/s41592-019-0344-8
https://doi.org/10.1073/pnas.1509788112
https://doi.org/10.1093/bioinformatics/btn603

convertMSFiles 53

overWrite = FALSE,
algorithm = "pwiz",
centroid = algorithm != "openms",
filters = NULL,
extraOpts = NULL,
PWizBatchSize = 1

)

Arguments

algorithm Either "pwiz" (implemented by msConvert of ProteoWizard), "openms" (im-
plemented by FileConverter of OpenMS) or "bruker" (implemented by Data-
Analysis).

vendor If TRUE only vendor formats are returned.

files, dirs The files argument should be a character vector with input files. If files
contains directories and dirs=TRUE then files from these directories are also
considered. An alternative method to specify input files is by the anaInfo argu-
ment. If the latter is specified files may be NULL.

outPath A character vector specifying directories that should be used for the output. Will
be re-cycled if necessary. If NULL, output directories will be kept the same as the
input directories.

anaInfo An analysis info table used to retrieve input files. Either this argument or files
(or both) should be set (i.e. not NULL).

from Input format (see below). These are used to find analyses when dirs=TRUE or
anaInfo is set.

to Output format: "mzXML" or "mzML".

overWrite Should existing destination file be overwritten (TRUE) or not (FALSE)?

centroid Set to TRUE to enable centroiding (not supported if algorithm="openms"). In
addition, when algorithm="pwiz" the value may be "vendor" to perform cen-
troiding with the vendor algorithm or "cwt" to use ProteoWizard’s wavelet al-
gorithm.

filters When algorithm="pwiz": a character vector specifying one or more filters.
The elements of the specified vector are directly passed to the --filter option
(see here)

extraOpts A character vector specifying any extra commandline parameters passed to
msConvert or FileConverter. Set to NULL to ignore. For options: see File-
Converter and msConvert.

PWizBatchSize When algorithm="pwiz": the number of analyses to process by a single call
to msConvert. Usually a value of one is most efficient. Set to zero to run all
analyses all at once from a single call.

Details

MSFileFormats returns a character with all supported input formats (see below).

convertMSFiles converts the data format of an analysis to another. It uses tools from ProteoWizard
(msConvert command), OpenMS (FileConverter command) or Bruker DataAnalysis to perform

http://proteowizard.sourceforge.net/tools/filters.html
https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_FileConverter.html
https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_FileConverter.html
http://proteowizard.sourceforge.net/tools/msconvert.html
http://proteowizard.sourceforge.net/
http://www.openms.de/

54 convertMSFiles

the conversion. Supported input and output formats include ‘mzXML’, ‘.mzML’ and several vendor
formats, depending on which algorithm is used.

Parallelization

convertMSFiles (except if algorithm="bruker") uses multiprocessing to parallelize computa-
tions. Please see the parallelization section in the handbook for more details and patRoon options
for configuration options.

Conversion formats

Possible output formats (to argument) are mzXML and mzML.

Possible input formats (from argument) depend on the algorithm that was chosen and may include:

• thermo: Thermo ‘.RAW’ files (only algorithm="pwiz").

• bruker: Bruker ‘.d’, ‘.yep’, ‘.baf’ and ‘.fid’ files (only algorithm="pwiz" or algorithm="bruker").

• agilent: Agilent ‘.d’ files (only algorithm="pwiz").

• ab: AB Sciex ‘.wiff’ files (only algorithm="pwiz").

• waters Waters ‘.RAW’ files (only algorithm="pwiz").

• mzXML/mzML: Open format ‘.mzXML’/‘.mzML’ files (only algorithm="pwiz" or algorithm="openms").

Note that the actual supported file formats of ProteoWizard depend on how it was installed (see
here).

References

Rost HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich H, Guten-
brunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G, Rurik M, Schmitt
U, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O, Choudhary JS, Malmstrom L, Aebersold
R, Reinert K, Kohlbacher O (2016). “OpenMS: a flexible open-source software platform for mass
spectrometry data analysis.” Nature Methods, 13(9), 741–748. doi:10.1038/nmeth.3959.

Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, Gatto L, Fischer
B, Pratt B, Egertson J, Hoff K, Kessner D, Tasman N, Shulman N, Frewen B, Baker TA, Brusniak
M, Paulse C, Creasy D, Flashner L, Kani K, Moulding C, Seymour SL, Nuwaysir LM, Lefebvre
B, Kuhlmann F, Roark J, Rainer P, Detlev S, Hemenway T, Huhmer A, Langridge J, Connolly B,
Chadick T, Holly K, Eckels J, Deutsch EW, Moritz RL, Katz JE, Agus DB, MacCoss M, Tabb
DL, Mallick P (2012). “A cross-platform toolkit for mass spectrometry and proteomics.” Nature
Biotechnology, 30(10), 918–920. doi:10.1038/nbt.2377.

Examples

Not run:
Use FileConverter of OpenMS to convert between open mzXML/mzML format
convertMSFiles("standard-1.mzXML", to = "mzML", algorithm = "openms")

Convert all Thermo .RAW files in the analyses/raw directory to mzML and
store the files in analyses/mzml. During conversion files are centroided by

http://proteowizard.sourceforge.net/formats/index.html
https://doi.org/10.1038/nmeth.3959
https://doi.org/10.1038/nbt.2377

defaultOpenMSAdducts 55

the peakPicking filter and only MS 1 data is kept.
convertMSFiles("analyses/raw", "analyses/mzml", dirs = TRUE, from = "thermo",

centroid = "vendor", filters = "msLevel 1")

End(Not run)

defaultOpenMSAdducts Default adducts for OpenMS componentization

Description

Returns the default adducts and their probabilities when the OpenMS algorithm is used for compo-
nentization.

Usage

defaultOpenMSAdducts(ionization)

Arguments

ionization The ionization polarity: either "positive" or "negative".

Details

See the potentialAdducts argument of generateComponentsOpenMS for more details.

EICParams Extracted Ion Chromatogram parameters

Description

Parameters for creation of extracted ion chromatograms.

Usage

getDefEICParams(...)

Arguments

... optional named arguments that override defaults.

56 feature-optimization

Details

To configure the creation of extracted ion chromatograms (EICs) several parameters exist:

• rtWindow Retention time (in seconds) that will be subtracted/added to respectively the mini-
mum and maximum retention time of the feature. Thus, setting this value to ‘>0’ will ’zoom
out’ on the retention time axis.

• topMost Only create EICs for this number of top most intense features. If NULL then EICs are
created for all features.

• topMostByRGroup If set to TRUE and topMost is set: only create EICs for the top most features
in each replicate group. For instance, when topMost=1 and topMostByRGroup=TRUE, then
EICs will be plotted for the most intense feature of each replicate group.

• onlyPresent If TRUE then EICs are created only for analyses in which a feature was detected.
If onlyPresent=FALSE then EICs are generated for all analyses. The latter is handy to evalu-
ate if a peak was ’missed’ during feature detection or removed during e.g. filtering.

if onlyPresent=FALSE then the following parameters are also relevant:

• mzExpWindow To create EICs for analyses in which no feature was found, the m/z value is de-
rived from the min/max values of all features in the feature group. The value of mzExpWindow
further expands this window.

• setsAdductPos,setsAdductNeg (sets workflow) In sets workflows the adduct must be known
to calculate the ionized m/z. If a feature is completely absent in a particular set then it follows
no adduct annotations are available and the value of setsAdductPos (positive ionization data)
or setsAdductNeg (negative ionization data) will be used instead.

These parameters are passed as a named list as the EICParams argument to functions that use
EICs. The getDefEICParams function can be used to generate such parameter list with defaults.

feature-optimization Optimization of feature finding and grouping parameters

Description

Automatic optimization of feature finding and grouping parameters through Design of Experiments
(DoE).

Usage

optimizeFeatureGrouping(
features,
algorithm,
...,
templateParams = list(),
paramRanges = list(),
maxIterations = 50,
maxModelDeviation = 0.1,

feature-optimization 57

parallel = TRUE
)

generateFGroupsOptPSet(algorithm, ...)

getDefFGroupsOptParamRanges(algorithm)

optimizeFeatureFinding(
anaInfo,
algorithm,
...,
templateParams = list(),
paramRanges = list(),
isoIdent = if (algorithm == "openms") "OpenMS" else "IPO",
checkPeakShape = "none",
CAMERAOpts = list(),
maxIterations = 50,
maxModelDeviation = 0.1,
parallel = TRUE

)

generateFeatureOptPSet(algorithm, ...)

getDefFeaturesOptParamRanges(algorithm, method = "centWave")

Arguments

features A features object with the features that should be used to optimize grouping.

algorithm The algorithm used for finding or grouping features (see findFeatures and
groupFeatures).

... One or more lists with parameter sets (see below) (for optimizeFeatureFinding
and optimizeFeatureGrouping). Alternatively, named arguments that set (and
possibly override) the parameters that should be returned from generateFeatureOptPSet
or generateFGroupsOptPSet.

templateParams Template parameter set (see below).

paramRanges A list with vectors containing absolute parameter ranges (minimum/maximum)
that constrain numeric parameters choosen during experiments. See the getDefFeaturesOptParamRanges
and getDefFGroupsOptParamRanges functions for defaults. Values should be
Inf when no limit should be used.

maxIterations Maximum number of iterations that may be performed to find optimimum val-
ues. Used to restrict neededless long optimization procedures. In IPO this was
fixed to ‘50’.

maxModelDeviation

See the Potential suboptimal results by optimization model section
below.

parallel If set to TRUE then code is executed in parallel through the futures package.
Please see the parallelization section in the handbook for more details.

https://CRAN.R-project.org/package=futures

58 feature-optimization

anaInfo Analysis info table (passed to findFeatures).

isoIdent Sets the algorithm used to identify isotopes. Valid values are: "IPO", "CAMERA"
and "OpenMS". The latter can only be used when OpenMS is used to find fea-
tures, and is highly recommended in this situation.

checkPeakShape Additional peak shape checking of isotopes. Only used if isoIdent="IPO".
Valid values: "none", "borderIntensity", "sinusCurve" or "normalDistr".

CAMERAOpts A list with additional arguments passed to CAMERA::findIsotopes when isoIdent="CAMERA".

method Method used by XCMS to find features (only if algorithm="xcms").

Details

Many different parameters exist that may affect the output quality of feature finding and grouping.
To avoid time consuming manual experimentation, functionality is provided to largely automate the
optimization process. The methodology, which uses design of experiments (DoE), is based on the
excellent Isotopologue Parameter Optimization (IPO) R package. The functionality of this package
is directly integrated in patRoon. Some functionality was added or changed, however, the principle
algorithm workings are nearly identical.

Compared to IPO, the following functionality was added or changed:

• The code was made more generic in order to include support for other feature finding/grouping
algorithms (e.g. OpenMS, enviPick, XCMS3).

• The methodology of FeatureFinderMetabo (OpenMS) may be used to find isotopes.

• The maxModelDeviation parameter was added to potentially avoid suboptimal results (issue
discussed here).

• The use of multiple ’parameter sets’ (discussed below) which, for instance, allow optimizing
qualitative paremeters more easily (see examples).

• More consistent optimization code for feature finding/grouping.

• More consistent output using S4 classes (i.e. optimizationResult class).

• Parallelization is performed via the future package instead of BiocParallel. If this is en-
abled (parallel=TRUE) then any parallelization supported by the feature finding or grouping
algorithm is disabled.

Value

The optimizeFeatureFinding and optimizeFeatureGrouping return their results in a optimizationResult
object.

Parameter sets

Which parameters should be optimized is determined by a parameter set. A set is defined by a
named list containing the minimum and maximum starting range for each parameter that should
be tested. For instance, the set list(chromFWHM = c(5, 10), mzPPM = c(5, 15)) specifies that the
chromFWHM and mzPPM parameters (used by OpenMS feature finding) should be optimized within
a range of ‘5’-‘10’ and ‘5’-‘15’, respectively. Note that this range may be increased or decreased
after a DoE iteration in order to find a better optimum. The absolute limits are controlled by the
paramRanges function argument.

https://github.com/rietho/IPO
https://github.com/rietho/IPO/issues/61
https://github.com/rietho/IPO/issues/61
https://CRAN.R-project.org/package=future

feature-optimization 59

Multiple parameter sets may be specified (i.e. through the . . . function argument). In this situation,
the optimization algorithm is repeated for each set, and the final optimum is determined from the
parameter set with the best response. The templateParams function argument may be useful in
this case to define a template for each parameter set. Actual parameter sets are then constructed by
joining each parameter set with the set specified for templateParams. When a parameter is defined
in both a regular and template set, the parameter in the regular set takes precedence.

Parameters that should not be optimized but still need to be set for the feature finding/grouping
functions should also be defined in a (template) parameter set. Which parameters should be opti-
mized is determined whether its value is specified as a vector range or a single fixed value. For
instance, when a set is defined as list(chromFWHM = c(5, 10), mzPPM = 5), only the chromFWHM
parameter is optimized, whereas mzPPM is kept constant at ‘5’.

Using multiple parameter sets with differing fixed values allows optimization of qualitative values
(see examples below).

The parameters specified in parameter sets are directly passed through the findFeatures or groupFeatures
functions. Hence, grouping and retention time alignment parameters used by XCMS should (still)
be set through the groupArgs and retcorArgs parameters.

NOTE: For XCMS3, which normally uses parameter classes for settings its options, the parameters
must be defined in a named list like any other algorithm. The set parameters are then used passed
to the constructor of the right parameter class object (e.g. CentWaveParam, ObiwarpParam). For
grouping/alignment sets, these parameters need to be specified in nested lists called groupParams
and retAlignParams, respectively (similar to groupArgs/retcorArgs for algorithm="xcms").
Finally, the underlying XCMS method to be used should be defined in the parameter set (i.e. by
setting the method field for feature parameter sets and the groupMethod and retAlignMethod for
grouping/aligning parameter sets). See the examples below for more details.

NOTE: Similar to IPO, the peakwidth and prefilter parameters for XCMS feature finding should
be split in two different values:

• The minimum and maximum ranges for peakwidth are optimized by setting min_peakwidth
and max_peakwidth, respectively.

• The k and I parameters contained in prefilter are split in prefilter and value_of_prefilter,
respectively.

Similary, for KPIC2, the following parameters should be split:

• the width parameter (feature optimization) is optimized by specifying the min_width and
max_width parameters.

• the tolerance and weight parameters (feature grouping optimization) are optimized by set-
ting mz_tolerance/rt_tolerance and mz_weight/rt_weight parameters, respectively.

Functions

The optimizeFeatureFinding and optimizeFeatureGrouping are the functions to be used to
optimize parameters for feature finding and grouping, respectively. These functions are analogous
to optimizeXcmsSet and optimizeRetGroup from IPO.

The generateFeatureOptPSet and generateFGroupsOptPSet functions may be used to generate
a parameter set for feature finding and grouping, respectively. Some algorithm dependent default pa-
rameter optimization ranges will be returned. These functions are analogous to getDefaultXcmsSetStartingParams

60 feature-optimization

and getDefaultRetGroupStartingParams from IPO. However, unlike their IPO counterparts,
these functions will not output default fixed values. The generateFGroupsOptPSet will only gen-
erate defaults for density grouping if algorithm="xcms".

The getDefFeaturesOptParamRanges and getDefFGroupsOptParamRanges return the default ab-
solute optimization parameter ranges for feature finding and grouping, respectively. These functions
are useful if you want to set the paramRanges function argument.

Potential suboptimal results by optimization model

After each experiment iteration an optimimum parameter set is found by generating a model con-
taining the tested parameters and their responses. Sometimes the actual response from the param-
eters derived from the model is actually signficantly lower than expected. When the response is
lower than the maximum reponse found during the experiment, the parameters belonging to this
experimental maximum may be choosen instead. The maxModelDeviation argument sets the max-
imum deviation in response between the modelled and experimental maxima. The value is relative:
‘0’ means that experimental values will always be favored when leading to improved responses,
whereas 1 will effectively disable this procedure (and return to ’regular’ IPO behaviour).

Source

The code and methodology is a direct adaptation from the IPO R package.

References

Libiseller G, Dvorzak M, Kleb U, Gander E, Eisenberg T, Madeo F, Neumann S, Trausinger G, Sin-
ner F, Pieber T, Magnes C (2015). “IPO: a tool for automated optimization of XCMS parameters.”
BMC Bioinformatics, 16(1). doi:10.1186/s1285901505628.

Examples

example data from patRoonData package
dataDir <- patRoonData::exampleDataPath()
anaInfo <- generateAnalysisInfo(dataDir)
anaInfo <- anaInfo[1:2,] # only focus on first two analyses (e.g. training set)

optimize mzPPM and chromFWHM parameters
ftOpt <- optimizeFeatureFinding(anaInfo, "openms", list(mzPPM = c(5, 10), chromFWHM = c(4, 8)))

optimize chromFWHM and isotopeFilteringModel (a qualitative parameter)
ftOpt2 <- optimizeFeatureFinding(anaInfo, "openms",

list(isotopeFilteringModel = "metabolites (5% RMS)"),
list(isotopeFilteringModel = "metabolites (2% RMS)"),
templateParams = list(chromFWHM = c(4, 8)))

perform grouping optimization with optimized features object
fgOpt <- optimizeFeatureGrouping(optimizedObject(ftOpt), "xcms",

list(groupArgs = list(bw = c(22, 28)),
retcorArgs = list(method = "obiwarp")))

same, but using the XCMS3 interface
fgOpt2 <- optimizeFeatureGrouping(optimizedObject(ftOpt), "xcms3",

https://github.com/rietho/IPO
https://doi.org/10.1186/s12859-015-0562-8

feature-plotting 61

list(groupMethod = "density", groupParams = list(bw = c(22, 28)),
retAlignMethod = "obiwarp"))

plot contour of first parameter set/DoE iteration
plot(ftOpt, paramSet = 1, DoEIteration = 1, type = "contour")

generate parameter set with some predefined and custom parameters to be
optimized.
pSet <- generateFeatureOptPSet("openms", chromSNR = c(3, 9),

useSmoothedInts = FALSE)

feature-plotting Plotting of grouped features

Description

Various plotting functions for feature group data.

Usage

S4 method for signature 'featureGroups,missing'
plot(

x,
colourBy = c("none", "rGroups", "fGroups"),
onlyUnique = FALSE,
retMin = FALSE,
showLegend = TRUE,
col = NULL,
pch = NULL,
...

)

S4 method for signature 'featureGroups'
plotInt(
obj,
average = FALSE,
normalized = FALSE,
xnames = TRUE,
showLegend = FALSE,
pch = 20,
type = "b",
lty = 3,
col = NULL,
plotArgs = NULL,
linesArgs = NULL

)

62 feature-plotting

S4 method for signature 'featureGroupsSet'
plotInt(
obj,
average = FALSE,
normalized = FALSE,
xnames = !sets,
showLegend = sets,
pch = 20,
type = "b",
lty = 3,
col = NULL,
plotArgs = NULL,
linesArgs = NULL,
sets = FALSE

)

S4 method for signature 'featureGroups'
plotChord(
obj,
addSelfLinks = FALSE,
addRetMzPlots = TRUE,
average = FALSE,
outerGroups = NULL,
addIntraOuterGroupLinks = FALSE,
...

)

S4 method for signature 'featureGroups'
plotChroms(
obj,
analysis = analyses(obj),
groupName = names(obj),
retMin = FALSE,
showPeakArea = FALSE,
showFGroupRect = TRUE,
title = NULL,
colourBy = c("none", "rGroups", "fGroups"),
showLegend = TRUE,
annotate = c("none", "ret", "mz"),
intMax = "eic",
EICParams = getDefEICParams(),
showProgress = FALSE,
xlim = NULL,
ylim = NULL,
EICs = NULL,
...

)

feature-plotting 63

S4 method for signature 'featureGroups'
plotVenn(obj, which = NULL, ...)

S4 method for signature 'featureGroupsSet'
plotVenn(obj, which = NULL, ..., sets = FALSE)

S4 method for signature 'featureGroups'
plotUpSet(obj, which = NULL, nsets = length(which), nintersects = NA, ...)

S4 method for signature 'featureGroups'
plotVolcano(
obj,
FCParams,
showLegend = TRUE,
averageFunc = mean,
normalized = FALSE,
col = NULL,
pch = 19,
...

)

S4 method for signature 'featureGroups'
plotGraph(obj, onlyPresent = TRUE, width = NULL, height = NULL)

S4 method for signature 'featureGroupsSet'
plotGraph(obj, onlyPresent = TRUE, set, ...)

Arguments

colourBy Sets the automatic colour selection: "none" for a single colour or "rGroups"/"fGroups"
for a distinct colour per replicate/feature group.

onlyUnique If TRUE and colourBy="rGroups" then only feature groups that are unique to a
replicate group are plotted.

retMin Plot retention time in minutes (instead of seconds).

showLegend Plot a legend if TRUE.

col Colour(s) used. If col=NULL then colours are automatically generated.

pch, type, lty Common plotting parameters passed to e.g. plot. For plot: if pch=NULL then
values are automatically assigned.

... passed to plot (plot, plotChroms, plotTICs and plotBPCs), VennDiagram
plotting functions (plotVenn), chordDiagram (plotChord) or upset (plotUpSet).

obj, x featureGroups object to be used for plotting.

average If TRUE then data within replicate groups are averaged.
For as.data.table: if features=TRUE other feature properties are also aver-
aged.

xnames Plot analysis (or replicate group if average=TRUE) names on the x axis.

64 feature-plotting

plotArgs, linesArgs
A list with further arguments passed to plot and lines, respectively.

sets (sets workflow) For plotInt: if TRUE then feature intensities are plot per set
(order follows the analysis information).
For plotVenn: If TRUE then the which argument changes its meaning and is
used to specify the names of the sets to be compared.

addSelfLinks If TRUE then ’self-links’ are added which represent non-shared data.

addRetMzPlots Set to TRUE to enable m/z vs retention time scatter plots.

outerGroups Character vector of names to be used as outer groups. The values in the specified
vector should be named by analysis names (average set to FALSE) or replicate
group names (average set to TRUE), for instance: c(analysis1 = "group1",
analysis2 = "group1", analysis3 = "group2"). Set to NULL to disable outer
groups.

addIntraOuterGroupLinks

If TRUE then links will be added within outer groups.
analysis, groupName

character vector with the analyses/group names to be considered for plotting.
Compared to subsetting the featureGroups object (obj) upfront this is slightly
faster and (if onlyPresent=FALSE) allows plotting chromatograms for feature
groups where none of the specified analyses contain the feature (which is im-
possible otherwise since subsetting leads to removal of ’empty’ feature groups).

showPeakArea Set to TRUE to display integrated chromatographic peak ranges by filling (shad-
ing) their areas.

showFGroupRect Set to TRUE to mark the full retention/intensity range of all features within a
feature group by drawing a rectangle around it.

title Character string used for title of the plot. If NULL a title will be automatically
generated.

annotate If set to "ret" and/or "mz" then retention and/or m/z values will be drawn for
each plotted feature group.

intMax Method used to determine the maximum intensity plot limit. Should be "eic"
(from EIC data) or "feature" (from feature data). Ignored if the ylim parame-
ter is specified.

EICParams A named list with parameters used for extracted ion chromatogram (EIC) cre-
ation. See the EIC parameters documentation for more details.

showProgress if set to TRUE then a text progressbar will be displayed when all EICs are being
plot. Set to "none" to disable any annotation.

xlim, ylim Sets the plot size limits used by plot. Set to NULL for automatic plot sizing.

EICs Internal parameter for now and should be kept at NULL (default).

which A character vector with replicate groups used for comparison. Set to NULL to
ignore.
For plotVenn: alternatively a named list containing elements of character
vectors with replicate groups to compare. For instance, which=list(infl =
c("influent-A", "influent-B"), effl = c("effluent-A", "effluent-B")),
will compare the features in replicate groups ‘"influent-A/B"’ against those

feature-plotting 65

in ‘"effluent-A/B"’. The names of the list are used for labelling in the plot,
and will be made automatically if not specified.

nsets, nintersects
See upset.

FCParams A parameter list to calculate Fold change data. See getFCParams for more de-
tails.

averageFunc, normalized
Used for intensity data treatment, see the documentation for the as.data.table
method.

onlyPresent Only plot feature groups of internal standards that are still present in the featureGroups
input object (which may be otherwise be removed by e.g. subsetting or filter).

width, height Passed to visNetwork.

set (sets workflow) The set for which data must be plotted.

Details

plot Generates an m/z vs retention time plot for all featue groups. Optionally highlights unique/overlapping
presence amongst replicate groups.

plotInt Generates a line plot for the (averaged) intensity of feature groups within all analyses

plotChord Generates a chord diagram which can be used to visualize shared presence of feature
groups between analyses or replicate groups. In addition, analyses/replicates sharing similar prop-
erties (e.g. location, age, type) may be grouped to enhance visualization between these ’outer
groups’.

plotChroms Plots extracted ion chromatograms (EICs) of feature groups.

plotVenn plots a Venn diagram (using VennDiagram) outlining unique and shared feature groups
between up to five replicate groups.

plotUpSet plots an UpSet diagram (using the upset function) outlining unique and shared feature
groups between given replicate groups.

plotVolcano Plots Fold change data in a ’Volcano plot’.

plotGraph generates an interactive network plot which is used to explore internal standard (IS)
assignments to each feature group. This requires the availability of IS assignments, see the docu-
mentation for normInts for details. The graph is rendered with visNetwork.

Value

plotVenn (invisibly) returns a list with the following fields:

• gList the gList object that was returned by the utilized VennDiagram plotting function.

• areas The total area for each plotted group.

• intersectionCounts The number of intersections between groups.

The order for the areas and intersectionCounts fields is the same as the parameter order from
the used plotting function (see e.g. draw.pairwise.venn and draw.triple.venn).

plotGraph returns the result of visNetwork.

66 featureAnnotations-class

Sets workflows

The following methods are changed or with new functionality:

• plotVenn and plotInt allow to handle data per set. See the sets argument description.

• plotGraph only plots data per set, and requires the set argument to be set.

Author(s)

Rick Helmus <<r.helmus@uva.nl>> and Ricardo Cunha <<cunha@iuta.de>> (plotTICs and
plotBPCs functions)

References

Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014). “circlize implements and enhances circular
visualization in R.” Bioinformatics, 30, 2811-2812.

Conway JR, Lex A, Gehlenborg N (2017). “UpSetR: an R package for the visualization of inter-
secting sets and their properties.” Bioinformatics, 33(18), 2938-2940. doi:10.1093/bioinformatics/
btx364, http://dx.doi.org/10.1093/bioinformatics/btx364.

Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014). “UpSet: Visualization of In-
tersecting Sets.” IEEE Transactions on Visualization and Computer Graphics, 20(12), 1983–1992.
doi:10.1109/tvcg.2014.2346248.

See Also

featureGroups-class, groupFeatures

featureAnnotations-class

Base feature annotations class

Description

Holds information for all feature group annotations.

Usage

S4 method for signature 'featureAnnotations'
annotations(obj)

S4 method for signature 'featureAnnotations'
groupNames(obj)

S4 method for signature 'featureAnnotations'
length(x)

S4 method for signature 'featureAnnotations,ANY,missing,missing'

https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1093/bioinformatics/btx364
http://dx.doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1109/tvcg.2014.2346248

featureAnnotations-class 67

x[i, j, ..., drop = TRUE]

S4 method for signature 'featureAnnotations,ANY,missing'
x[[i, j]]

S4 method for signature 'featureAnnotations'
x$name

S4 method for signature 'featureAnnotations'
as.data.table(

x,
fGroups = NULL,
fragments = FALSE,
countElements = NULL,
countFragElements = NULL,
OM = FALSE,
normalizeScores = "none",
excludeNormScores = defaultExclNormScores(x)

)

S4 method for signature 'featureAnnotations'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'featureAnnotations'
filter(
obj,
minExplainedPeaks = NULL,
scoreLimits = NULL,
elements = NULL,
fragElements = NULL,
lossElements = NULL,
topMost = NULL,
OM = FALSE,
negate = FALSE

)

S4 method for signature 'featureAnnotations'
plotVenn(obj, ..., labels = NULL, vennArgs = NULL)

S4 method for signature 'featureAnnotations'
plotUpSet(
obj,
...,
labels = NULL,
nsets = length(list(...)) + 1,
nintersects = NA,
upsetArgs = NULL

)

68 featureAnnotations-class

Arguments

obj, x featureAnnotations object to be accessed

i, j For [/[[: A numeric or character value which is used to select feature groups by
their index or name, respectively (for the order/names see groupNames()).

For [: Can also be logical to perform logical selection (similar to regular vec-
tors). If missing all feature groups are selected.

For [[: should be a scalar value.

For delete: The data to remove from. i are the feature groups as numeric
index, logical or character, j the candidates as numeric indices (rows). If either
is NULL then data for all is removed. j may also be a function: it will be called
for each feature group, with the annotation table (a data.table), the feature
group name and any other arguments passed as ... to delete. The return value
of this function specifies the candidate indices (rows) to be removed (specified
as an integer or logical vector).

... For the "[" operator: ignored.
For delete: passed to the function specified as j.
Others: Any further (and unique) featureAnnotations objects.

drop ignored.

name The feature group name (partially matched).

fGroups The featureGroups object that was used to generate this object. If not NULL it
is used to add feature group information (retention and m/z values).

fragments If TRUE then information on annotated fragments will be included. Automati-
cally set to TRUE if countFragElements is set.

countElements, countFragElements
A character vector with elements that should be counted for each candidate’s
formula. For instance, c("C", "H") adds columns for both carbon and hydrogen
amounts of each formula. Note that the neutral formula (neutral_formula
column) is used to count elements of non-fragmented formulae, whereas the
charged formula of fragments (ion_formula column in fragInfo data) is used
for fragments. Set to NULL to not count any elements.

OM For as.data.table: if set to TRUE several columns with information relevant
for organic matter (OM) characterization will be added (e.g. elemental ratios,
classification). This will also make sure that countElements contains at least
C, H, N, O, P and S.
For filter: If TRUE then several filters are applied to exclude unlikely formula
candidates present in organic matter (OM). See Source section for details.

normalizeScores

A character that specifies how normalization of annotation scorings occurs.
Either "none" (no normalization), "max" (normalize to max value) or "minmax"
(perform min-max normalization). Note that normalization of negative scores
(e.g. output by SIRIUS) is always performed as min-max. Furthermore, cur-
rently normalization for compounds takes the original min/max scoring values

featureAnnotations-class 69

into account when candidates were generated. Thus, for compounds scoring,
normalization is not affected when candidate results were removed after they
were generated (e.g. by use of filter).

excludeNormScores

A character vector specifying any compound scoring names that should not
be normalized. Set to NULL to normalize all scorings. Note that whether any
normalization occurs is set by the excludeNormScores argument.
For compounds: By default score and individualMoNAScore are set to mimic
the behavior of the MetFrag web interface.

minExplainedPeaks

Minimum number of explained peaks. Set to NULL to ignore.

scoreLimits Filter results by their scores. Should be a named list that contains two-sized
numeric vectors with the minimum/maximum value of a score (use -Inf/Inf for
no limits). The names of each element should follow the name column of the ta-
ble returned by formulaScorings$name and compoundScorings()$name. For
instance, scoreLimits=list(numberPatents=c(10, Inf)) specifies that numberPatents
should be at least ‘10’. Note that a result without a specified scoring is never
removed. If a score term exists multiple times, i.e. due to a consensus, then a
candidate is kept if at least one of the terms falls within the range. Set to NULL
to skip this filter.

elements Only retain candidate formulae (neutral form) that match a given elemental re-
striction. The format of elements is a character string with elements that
should be present where each element is followed by a valid amount or a range
thereof. If no number is specified then ‘1’ is assumed. For instance, elements="C1-10H2-20O0-2P",
specifies that ‘1-10’, ‘2-20’, ‘0-2’ and ‘1’ carbon, hydrogen, oxygen and phos-
phorus atoms should be present, respectively. When length(elements)>1 for-
mulas are tested to follow at least one of the given elemental restrictions. For
instance, elements=c("P", "S") specifies that either one phosphorus or one
sulfur atom should be present. Set to NULL to ignore this filter.

fragElements, lossElements
Specifies elemental restrictions for fragment or neutral loss formulae (charged
form). Candidates are retained if at least one of the fragment formulae follow
(or not follow if negate=TRUE) the given restrictions. See elements for the used
format.

topMost Only keep a maximum of topMost candidates with highest score (or least high-
est if negate=TRUE). Set to NULL to ignore.

negate If TRUE then filters are applied in opposite manner.

labels A character with names to use for labelling. If NULL labels are automatically
generated.

vennArgs A list with further arguments passed to VennDiagram plotting functions. Set
to NULL to ignore.

nsets, nintersects
See upset.

upsetArgs A list with any further arguments to be passed to upset. Set to NULL to ignore.

70 featureAnnotations-class

Details

This class stores annotation data for feature groups, such as molecular formulae, SMILES iden-
tifiers, compound names etc. The class of objects that are generated by formula and compound
annotation (generateFormulas and generateCompounds) are based on this class.

Value

as.data.table returns a data.table.

delete returns the object for which the specified data was removed.

filter returns a filtered featureAnnotations object.

plotVenn (invisibly) returns a list with the following fields:

• gList the gList object that was returned by the utilized VennDiagram plotting function.

• areas The total area for each plotted group.

• intersectionCounts The number of intersections between groups.

The order for the areas and intersectionCounts fields is the same as the parameter order from
the used plotting function (see e.g. draw.pairwise.venn and draw.triple.venn).

Methods (by generic)

• annotations(featureAnnotations): Accessor for the groupAnnotations slot.

• groupNames(featureAnnotations): returns a character vector with the names of the fea-
ture groups for which data is present in this object.

• length(featureAnnotations): Obtain total number of candidates.

• x[i: Subset on feature groups.

• x[[i: Extracts annotation data for a feature group.

• $: Extracts annotation data for a feature group.

• as.data.table(featureAnnotations): Generates a table with all annotation data for each
feature group and other information such as element counts.

• delete(featureAnnotations): Completely deletes specified annotations.

• filter(featureAnnotations): Provides rule based filtering for feature group annotations.
Useful to eliminate unlikely candidates and speed up further processing.

• plotVenn(featureAnnotations): plots a Venn diagram (using VennDiagram) outlining
unique and shared candidates of up to five different featureAnnotations objects.

• plotUpSet(featureAnnotations): plots an UpSet diagram (using the upset function) out-
lining unique and shared candidates between different featureAnnotations objects.

Slots

groupAnnotations A list with for each annotated feature group a data.table with annotation
data. Use the annotations method for access.

scoreTypes A character with all the score types present in this object.

scoreRanges The minimum and maximum score values of all candidates for each feature group.
Used for normalization.

featureAnnotations-class 71

Source

Calculation of the aromaticity index (AI) and related double bond equivalents (DBE_AI) is per-
formed as described in Koch 2015. Formula classification is performed by the rules described in
Abdulla 2013. Filtering of OM related molecules is performed as described in Koch 2006 and
Kujawinski 2006. (see references).

S4 class hierarchy

• workflowStep

– featureAnnotations

* formulas

· formulasConsensus

· formulasSet

· formulasUnset

· formulasSIRIUS

* compounds

· compoundsConsensus

· compoundsMF

· compoundsSet

· compoundsUnset

· compoundsSIRIUS

References

Koch BP, Dittmar T (2015). “From mass to structure: an aromaticity index for high-resolution mass
data of natural organic matter.” Rapid Communications in Mass Spectrometry, 30(1), 250–250.
doi:10.1002/rcm.7433.

Abdulla HA, Sleighter RL, Hatcher PG (2013). “Two Dimensional Correlation Analysis of Fourier
Transform Ion Cyclotron Resonance Mass Spectra of Dissolved Organic Matter: A New Graphical
Analysis of Trends.” Analytical Chemistry, 85(8), 3895–3902. doi:10.1021/ac303221j.

Koch BP, Dittmar T (2006). “From mass to structure: an aromaticity index for high-resolution
mass data of natural organic matter.” Rapid Communications in Mass Spectrometry, 20(5), 926–
932. doi:10.1002/rcm.2386.

Kujawinski EB, Behn MD (2006). “Automated Analysis of Electrospray Ionization Fourier Trans-
form Ion Cyclotron Resonance Mass Spectra of Natural Organic Matter.” Analytical Chemistry,
78(13), 4363–4373. doi:10.1021/ac0600306.

Conway JR, Lex A, Gehlenborg N (2017). “UpSetR: an R package for the visualization of inter-
secting sets and their properties.” Bioinformatics, 33(18), 2938-2940. doi:10.1093/bioinformatics/
btx364, http://dx.doi.org/10.1093/bioinformatics/btx364.

Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014). “UpSet: Visualization of In-
tersecting Sets.” IEEE Transactions on Visualization and Computer Graphics, 20(12), 1983–1992.
doi:10.1109/tvcg.2014.2346248.

https://doi.org/10.1002/rcm.7433
https://doi.org/10.1021/ac303221j
https://doi.org/10.1002/rcm.2386
https://doi.org/10.1021/ac0600306
https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1093/bioinformatics/btx364
http://dx.doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1109/tvcg.2014.2346248

72 featureGroupsComparison-class

See Also

formulas-class and compounds-class

The derived formulas and compounds classes.

featureGroupsComparison-class

Feature groups comparison class

Description

This class is used for comparing different featureGroups objects.

Usage

S4 method for signature 'featureGroupsComparison'
names(x)

S4 method for signature 'featureGroupsComparison'
length(x)

S4 method for signature 'featureGroupsComparison,ANY,missing,missing'
x[i, j, ..., drop = TRUE]

S4 method for signature 'featureGroupsComparison,ANY,missing'
x[[i, j]]

S4 method for signature 'featureGroupsComparison'
x$name

Arguments

x A featureGroupsComparison object.

i For [/[[: A numeric or character value which is used to select labels by their
index or name, respectively (for the order/names see names()).

For [: Can also be logical to perform logical selection (similar to regular vec-
tors). If missing all labels are selected.

For [[: should be a scalar value.

... Ignored.

drop, j ignored.

name The label name (partially matched).

Details

Objects from this class are returned by comparison.

featureQualityNames 73

Methods (by generic)

• names(featureGroupsComparison): Obtain the labels that were given to each compared
feature group.

• length(featureGroupsComparison): Number of feature groups objects that were com-
pared.

• x[i: Subset on labels that were assigned to compared feature groups.

• x[[i: Extract a featureGroups object by its label.

• $: Extract a compound table for a feature group.

Slots

fGroupsList A list of featureGroups object that were compared

comparedFGroups A pseudo featureGroups object containing grouped feature groups.

featureQualityNames Returns chromatographic peak quality and score names for features
and/or feature groups.

Description

Returns chromatographic peak quality and score names for features and/or feature groups.

Usage

featureQualityNames(feat = TRUE, group = TRUE, scores = FALSE, totScore = TRUE)

Arguments

feat If TRUE then names specific to features are returned.

group If TRUE then names specific to groups are returned.

scores If TRUE the score names are returned, otherwise the quality names.

totScore If TRUE (and scores=TRUE) then the name of the total score is included.

74 features-class

features-class Base features class

Description

Holds information for all features present within a set of analysis.

Usage

S4 method for signature 'features'
length(x)

S4 method for signature 'features'
show(object)

S4 method for signature 'features'
featureTable(obj)

S4 method for signature 'features'
analysisInfo(obj)

S4 method for signature 'features'
analyses(obj)

S4 method for signature 'features'
replicateGroups(obj)

S4 method for signature 'features'
as.data.table(x)

S4 method for signature 'features'
filter(

obj,
absMinIntensity = NULL,
relMinIntensity = NULL,
retentionRange = NULL,
mzRange = NULL,
mzDefectRange = NULL,
chromWidthRange = NULL,
qualityRange = NULL,
negate = FALSE

)

S4 method for signature 'features,ANY,missing,missing'
x[i, j, ..., drop = TRUE]

S4 method for signature 'features,ANY,missing'

features-class 75

x[[i]]

S4 method for signature 'features'
x$name

S4 method for signature 'features'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'features'
calculatePeakQualities(obj, weights, flatnessFactor, parallel = TRUE)

S4 method for signature 'features'
getTICs(obj, retentionRange = NULL, MSLevel = 1)

S4 method for signature 'features'
getBPCs(obj, retentionRange = NULL, MSLevel = 1)

S4 method for signature 'features'
plotTICs(
obj,
retentionRange = NULL,
MSLevel = 1,
retMin = FALSE,
title = NULL,
colourBy = c("none", "analyses", "rGroups"),
showLegend = TRUE,
xlim = NULL,
ylim = NULL,
...

)

S4 method for signature 'features'
plotBPCs(
obj,
retentionRange = NULL,
MSLevel = 1,
retMin = FALSE,
title = NULL,
colourBy = c("none", "analyses", "rGroups"),
showLegend = TRUE,
xlim = NULL,
ylim = NULL,
...

)

S4 method for signature 'featuresSet'
sets(obj)

76 features-class

S4 method for signature 'featuresSet'
show(object)

S4 method for signature 'featuresSet'
as.data.table(x)

S4 method for signature 'featuresSet,ANY,missing,missing'
x[i, ..., sets = NULL, drop = TRUE]

S4 method for signature 'featuresSet'
filter(obj, ..., negate = FALSE, sets = NULL)

S4 method for signature 'featuresSet'
unset(obj, set)

S4 method for signature 'featuresKPIC2'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'featuresXCMS'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'featuresXCMS3'
delete(obj, i = NULL, j = NULL, ...)

Arguments

obj, x, object features object to be accessed
absMinIntensity, relMinIntensity

Minimum absolute/relative intensity for features to be kept. The relative in-
tensity is determined from the feature with highest intensity (within the same
analysis). Set to ‘0’ or NULL to skip this step.

retentionRange, mzRange, mzDefectRange, chromWidthRange
Range of retention time (in seconds), m/z, mass defect (defined as the decimal
part of m/z values) or chromatographic peak width (in seconds), respectively.
Features outside this range will be removed. Should be a numeric vector with
length of two containing the min/max values. The maximum can be Inf to
specify no maximum range. Set to NULL to skip this step.

qualityRange Used to filter features by their peak qualities/scores (see calculatePeakQualities).
Should be a named list with min/max ranges for each quality/score to be fil-
tered (the featureQualityNames function can be used to obtain valid names).
Example: qualityRange=list(ModalityScore=c(0.3, Inf),SymmetryScore=c(0.5,
Inf)). Set to NULL to ignore.

negate If set to TRUE then filtering operations are performed in opposite manner.

i, j For [/[[: A numeric or character value which is used to select analyses by their
index or name, respectively (for the order/names see analyses()).

For [: Can also be logical to perform logical selection (similar to regular vec-
tors). If missing all analyses are selected.

features-class 77

For [[: should be a scalar value.

For delete: The data to remove from. i are the analyses as numeric index,
logical or character, j the features as numeric index (row) of the feature. If
either is NULL then data for all is removed. j may also be a function: it will
be called for each analysis, with the feature table (a data.table), the analysis
name and any other arguments passed as ... to delete. The return value of
this function specifies the feature indices (rows) to be removed (specified as an
integer or logical vector).

... For delete: passed to the function specified as j.
For plotTICs and plotBPCs: further arguments passed to plot.
For sets workflow methods: further arguments passed to the base features
method.

drop ignored.

name The analysis name (partially matched).

weights A named numeric vector that defines the weight for each score to calculate
the totalScore. The names of the vector follow the score names. Unspecified
weights are defaulted to ‘1’. Example: weights=c(ApexBoundaryRatioScore=0.5,
GaussianSimilarityScore=2).

flatnessFactor Passed to MetaClean as the flatness.factor argument to calculateJaggedness
and calculateModality.

parallel If set to TRUE then code is executed in parallel through the futures package.
Please see the parallelization section in the handbook for more details.

MSLevel Integer vector with the ms levels (i.e., 1 for MS1 and 2 for MS2) to obtain TIC
traces.

retMin Plot retention time in minutes (instead of seconds).

title Character string used for title of the plot. If NULL a title will be automatically
generated.

colourBy Sets the automatic colour selection: "none" for a single colour or "analyses"/"rGroups"
for a distinct colour per analysis or analysis replicate group.

showLegend Plot a legend if TRUE.

xlim, ylim Sets the plot size limits used by plot. Set to NULL for automatic plot sizing.

sets (sets workflow) For [and filter: a character with name(s) of the sets to
keep (or remove if negate=TRUE).

set (sets workflow) The name of the set.

Details

This class provides a way to store intensity, retention times, m/z and other data for all features in a
set of analyses. The class is virtual and derived objects are created by ’feature finders’ such as
findFeaturesOpenMS, findFeaturesXCMS and findFeaturesBruker.

https://CRAN.R-project.org/package=futures

78 features-class

Value

featureTable: A list containing a data.table for each analysis with feature data

analysisInfo: A data.frame containing a column with analysis name (analysis), its path
(path), and other columns such as replicate group name (group) and blank reference (blank).

delete returns the object for which the specified data was removed.

calculatePeakQualities returns a modified object amended with peak qualities and scores.

Methods (by generic)

• length(features): Obtain total number of features.

• show(features): Shows summary information for this object.

• featureTable(features): Get table with feature information

• analysisInfo(features): Get analysis information

• analyses(features): returns a character vector with the names of the analyses for which
data is present in this object.

• replicateGroups(features): returns a character vector with the names of the replicate
groups for which data is present in this object.

• as.data.table(features): Returns all feature data in a table.

• filter(features): Performs common rule based filtering of features. Note that this (and
much more) functionality is also provided by the filter method defined for featureGroups.
However, filtering a features object may be useful to avoid grouping large amounts of fea-
tures.

• x[i: Subset on analyses.

• x[[i: Extract a feature table for an analysis.

• $: Extract a feature table for an analysis.

• delete(features): Completely deletes specified features.

• calculatePeakQualities(features): Calculates peak qualities for each feature. This uses
MetaClean R package to calculate the following metrics: Apex-Boundary Ratio, FWHM2Base,
Jaggedness, Modality, Symmetry, Gaussian
Similarity, Sharpness, Triangle Peak Area Similarity Ratio and Zig-Zag index.
Please see the MetaClean publication (referenced below) for more details. For each metric,
an additional score is calculated by normalizing all feature values (unless the quality metric
definition has a fixed range) and scale from ‘0’ (worst) to ‘1’ (best). Then, a totalScore for
each feature is calculated by the (weighted) sum of all score values.

• getTICs(features): Obtain the total ion chromatogram/s (TICs) of the analyses.

• getBPCs(features): Obtain the base peak chromatogram/s (BPCs) of the analyses.

• plotTICs(features): Plots the TICs of the analyses.

• plotBPCs(features): Plots the BPCs of the analyses.

Slots

features List of features per analysis file. Use the featureTable method for access.

analysisInfo Analysis group information. Use the analysisInfo method for access.

https://github.com/KelseyChetnik/MetaClean/

features-class 79

S4 class hierarchy

• workflowStep

– features

* featuresSet

* featuresUnset

* featuresFromFeatGroups

* featuresConsensus

* featuresBruker

* featuresEnviPick

* featuresKPIC2

* featuresOpenMS

* featuresSAFD

* featuresSIRIUS

* featuresBrukerTASQ

* featuresXCMS

* featuresXCMS3

Sets workflows

The featuresSet class is applicable for sets workflows. This class is derived from features and
therefore largely follows the same user interface.

The following methods are specifically defined for sets workflows:

• sets Returns the set names for this object.

• unset Converts the object data for a specified set into a ’non-set’ object (featuresUnset),
which allows it to be used in ’regular’ workflows. The adduct annotations for the selected set
(e.g. as passed to makeSet) are used to convert all feature masses to ionic m/z values.

The following methods are changed or with new functionality:

• filter and the subset operator ([) have specific arguments to choose/filter by (feature pres-
ence in) sets. See the sets argument description.

Note

For calculatePeakQualities: sometimes MetaClean may return NA for the Gaussian
Similarity metric, in which case it will be set to ‘0’.

Author(s)

Rick Helmus <<r.helmus@uva.nl>> and Ricardo Cunha <<cunha@iuta.de>> (getTICs, getBPCs,
plotTICs and plotBPCs functions)

References

Chetnik K, Petrick L, Pandey G (2020). “MetaClean: a machine learning-based classifier for
reduced false positive peak detection in untargeted LC-MS metabolomics data.” Metabolomics,
16(11). doi:10.1007/s11306020017383.

https://doi.org/10.1007/s11306-020-01738-3

80 findFeatures

See Also

findFeatures

findFeatures Finding features

Description

Automatically find features.

Usage

findFeatures(analysisInfo, algorithm, ..., verbose = TRUE)

Arguments

analysisInfo A data.frame with Analysis information.

algorithm A character string describing the algorithm that should be used: "bruker",
"openms", "xcms", "xcms3", "envipick", "sirius", "kpic2", "safd"

... Further parameters passed to the selected feature finding algorithms.

verbose If set to FALSE then no text output is shown.

Details

Several functions exist to collect features (i.e. retention and MS information that represent potential
compounds) from a set of analyses. All ’feature finders’ return an object derived from the features
base class. The next step in a general workflow is to group and align these features across analyses
with groupFeatures. Note that some feature finders have a plethora of options which sometimes
may have a large effect on the quality of results. Fine-tuning parameters is therefore important, and
the optimum is largely dependent upon applied analysis methodology and instrumentation.

findFeatures is a generic function that will find features by one of the supported algorithms.
The actual functionality is provided by algorithm specific functions such as findFeaturesOpenMS
and findFeaturesXCMS. While these functions may be called directly, findFeatures provides a
generic interface and is therefore usually preferred.

Value

An object of a class which is derived from features.

Note

In most cases it will be necessary to centroid your MS input files. The only exception is Bruker,
however, you will still need centroided ‘mzXML’/‘mzML’ files for e.g. plotting chromatograms. In this
case the centroided MS files should be stored in the same directory as the raw Bruker ‘.d’ files.
The convertMSFiles function can be used to centroid data.

findFeaturesBruker 81

See Also

The features output class and its methods and the algorithm specific functions: findFeaturesBruker,
findFeaturesOpenMS, findFeaturesXCMS, findFeaturesXCMS3, findFeaturesEnviPick, findFeaturesSIRIUS,
findFeaturesKPIC2, findFeaturesSAFD

findFeaturesBruker Find features using Bruker DataAnalysis

Description

Uses the ’Find Molecular Features’ (FMF) algorithm of Bruker DataAnalysis vendor software to
find features.

Usage

findFeaturesBruker(
analysisInfo,
doFMF = "auto",
startRange = 0,
endRange = 0,
save = TRUE,
close = save,
verbose = TRUE

)

Arguments

analysisInfo A data.frame with Analysis information.

doFMF Run the ’Find Molecular Features’ algorithm before loading compounds. Valid
options are: "auto" (run FMF automatically if current results indicate it is nec-
essary) and "force" (run FMF always, even if cached results exist). Note that
checks done if doFMF="auto" are fairly simplistic, hence set doFMF="force" if
feature data needs to be updated.

startRange, endRange
Start/End retention range (seconds) from which to collect features. A 0 (zero)
for endRange marks the end of the analysis.

close, save If TRUE then Bruker files are closed and saved after processing with DataAnal-
ysis, respectively. Setting close=TRUE prevents that many analyses might be
opened simultaneously in DataAnalysis, which otherwise may use excessive
memory or become slow. By default save is TRUE when close is TRUE, which
is likely what you want as otherwise any processed data is lost.

verbose If set to FALSE then no text output is shown.

82 findFeaturesEnviPick

Details

This function uses Bruker to automatically find features. This function is called when calling
findFeatures with algorithm="bruker".

The resulting ’compounds’ are transferred from DataAnalysis and stored as features.

This algorithm only works with Bruker data files (.d extension) and requires Bruker DataAnalysis
and the RDCOMClient package to be installed. Furthermore, DataAnalysis combines multiple
related masses in a feature (e.g. isotopes, adducts) but does not report the actual (monoisotopic)
mass of the feature. Therefore, it is simply assumed that the feature mass equals that of the highest
intensity mass peak.

Value

An object of a class which is derived from features.

Note

If any errors related to DCOM appear it might be necessary to terminate DataAnalysis (note that
DataAnalysis might still be running as a background process). The ProcessCleaner application
installed with DataAnalayis can be used for this.

See Also

findFeatures for more details and other algorithms.

findFeaturesEnviPick Find features using enviPick

Description

Uses the enviPickwrap function from the enviPick R package to extract features.

Usage

findFeaturesEnviPick(analysisInfo, ..., parallel = TRUE, verbose = TRUE)

Arguments

analysisInfo A data.frame with Analysis information.

... Further parameters passed to enviPickwrap.

parallel If set to TRUE then code is executed in parallel through the futures package.
Please see the parallelization section in the handbook for more details.

verbose If set to FALSE then no text output is shown.

https://CRAN.R-project.org/package=futures

findFeaturesKPIC2 83

Details

This function uses enviPick to automatically find features. This function is called when calling
findFeatures with algorithm="envipick".

The input MS data files need to be centroided. The convertMSFiles function can be used to
centroid data.

Value

An object of a class which is derived from features.

Note

The analysis files must be in the mzXML format.

See Also

findFeatures for more details and other algorithms.

findFeaturesKPIC2 Find features using KPIC2

Description

Uses the KPIC2 R package to extract features.

Usage

findFeaturesKPIC2(
analysisInfo,
kmeans = TRUE,
level = 1000,
...,
parallel = TRUE,
verbose = TRUE

)

Arguments

analysisInfo A data.frame with Analysis information.

kmeans If TRUE then getPIC.kmeans is used to obtain PICs, otherwise it is getPIC.

level Passed to getPIC or getPIC.kmeans

... Further parameters passed to getPIC/getPIC.kmeans

parallel If set to TRUE then code is executed in parallel through the futures package.
Please see the parallelization section in the handbook for more details.

verbose If set to FALSE then no text output is shown.

https://github.com/hcji/KPIC2
https://CRAN.R-project.org/package=futures

84 findFeaturesOpenMS

Details

This function uses KPIC2 to automatically find features. This function is called when calling
findFeatures with algorithm="kpic2".

The MS files should be in the mzML or mzXML format.

The input MS data files need to be centroided. The convertMSFiles function can be used to
centroid data.

Value

An object of a class which is derived from features.

References

Ji H, Zeng F, Xu Y, Lu H, Zhang Z (2017). “KPIC2: An Effective Framework for Mass Spectrometry-
Based Metabolomics Using Pure Ion Chromatograms.” Analytical Chemistry, 89(14), 7631–7640.
doi:10.1021/acs.analchem.7b01547.

See Also

findFeatures for more details and other algorithms.

findFeaturesOpenMS Find features using OpenMS

Description

uses the FeatureFinderMetabo TOPP tool (see http://www.openms.de) to find features.

Usage

findFeaturesOpenMS(
analysisInfo,
noiseThrInt = 1000,
chromSNR = 3,
chromFWHM = 5,
mzPPM = 10,
reEstimateMTSD = TRUE,
traceTermCriterion = "sample_rate",
traceTermOutliers = 5,
minSampleRate = 0.5,
minTraceLength = 3,
maxTraceLength = -1,
widthFiltering = "fixed",
minFWHM = 1,
maxFWHM = 30,
traceSNRFiltering = FALSE,

https://doi.org/10.1021/acs.analchem.7b01547
https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_FeatureFinderMetabo.html
http://www.openms.de

findFeaturesOpenMS 85

localRTRange = 10,
localMZRange = 6.5,
isotopeFilteringModel = "metabolites (5% RMS)",
MZScoring13C = FALSE,
useSmoothedInts = TRUE,
extraOpts = NULL,
intSearchRTWindow = 3,
useFFMIntensities = FALSE,
verbose = TRUE

)

Arguments

analysisInfo A data.frame with Analysis information.

noiseThrInt Noise intensity threshold. Sets algorithm:common:noise_threshold_int op-
tion.

chromSNR Minimum S/N of a mass trace. Sets algorithm:common:chrom_peak_snr op-
tion.

chromFWHM Expected chromatographic peak width (in seconds). Sets algorithm:common:chrom_fwhm
option.

mzPPM Allowed mass deviation (ppm) for trace detection. Sets algorithm:mtd:mass_error_ppm.

reEstimateMTSD If TRUE then enables dynamic re-estimation of m/z variance during mass trace
collection stage. Sets algorithm:mtd:reestimate_mt_sd.

traceTermCriterion, traceTermOutliers, minSampleRate
Termination criterion for the extension of mass traces. See FeatureFinderMetabo.
Sets the algorithm:mtd:trace_termination_criterion, algorithm:mtd:trace_termination_outliers
and algorithm:mtd:min_sample_rate options, respectively.

minTraceLength, maxTraceLength
Minimum/Maximum length of mass trace (seconds). Set negative value for
maxlength to disable maximum. Sets algorithm:mtd:min_trace_length and
algorithm:mtd:min_trace_length, respectively.

widthFiltering, minFWHM, maxFWHM
Enable filtering of unlikely peak widths. See FeatureFinderMetabo. Sets algorithm:epd:width_filtering,
algorithm:epd:min_fwhm and algorithm:epd:max_fwhm, respectively.

traceSNRFiltering

If TRUE then apply post-filtering by signal-to-noise ratio after smoothing. Sets
the algorithm:epd:masstrace_snr_filtering option.

localRTRange, localMZRange
Retention/MZ range where to look for coeluting/isotopic mass traces. Sets the
algorithm:ffm:local_rt_range and algorithm:ffm:local_mz_range op-
tions, respectively.

isotopeFilteringModel

Remove/score candidate assemblies based on isotope intensities. See Feature-
FinderMetabo. Sets the algorithm:ffm:isotope_filtering_model option.

MZScoring13C Use the 13C isotope as the expected shift for isotope mass traces. See Feature-
FinderMetabo. Sets algorithm:ffm:mz_scoring_13C.

https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_FeatureFinderMetabo.html
https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_FeatureFinderMetabo.html
https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_FeatureFinderMetabo.html
https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_FeatureFinderMetabo.html
https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_FeatureFinderMetabo.html
https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_FeatureFinderMetabo.html

86 findFeaturesOpenMS

useSmoothedInts

If TRUE then use LOWESS intensities instead of raw intensities. Sets the algorithm:ffm:use_smoothed_intensities
option.

extraOpts Named list containing extra options that will be passed to FeatureFinderMetabo.
Any options specified here will override any of the above. Example: extraOpts=list("-algorithm:common:noise_threshold_int"=1000)
(corresponds to setting noiseThrInt=1000). Set to NULL to ignore.

intSearchRTWindow

Retention time window (in seconds, +/- feature retention time) that is used to
find the closest data point to the retention time to obtain the intensity of a feature
(this is needed since OpenMS does not provide this data).

useFFMIntensities

If TRUE then peak intensities are directly loaded from FeatureFinderMetabo
output. Otherwise, intensities are loaded afterwards from the input ‘mzML’ files,
which is potentially much slower, especially with many analyses files. However,
useFFMIntensities=TRUE is still somewhat experimental, may be less accurate
and requires a recent version of OpenMS (>=2.7).

verbose If set to FALSE then no text output is shown.

Details

This function uses OpenMS to automatically find features. This function is called when calling
findFeatures with algorithm="openms".

This functionality has been tested with OpenMS version >= 2.0. Please make sure it is installed
and configured, e.g. by installing patRoonExt or configuring the path of the binaries with the
patRoon.path.OpenMS option or the system ‘PATH’ variable.

The file format of analyses must be ‘mzML’.

The input MS data files need to be centroided. The convertMSFiles function can be used to
centroid data.

Value

An object of a class which is derived from features.

Parallelization

findFeaturesOpenMS uses multiprocessing to parallelize computations. Please see the paralleliza-
tion section in the handbook for more details and patRoon options for configuration options.

Note that for caching purposes, the analyses files must always exist on the local host computer, even
if it is not participating in computations.

References

Rost HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich H, Guten-
brunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G, Rurik M, Schmitt
U, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O, Choudhary JS, Malmstrom L, Aebersold
R, Reinert K, Kohlbacher O (2016). “OpenMS: a flexible open-source software platform for mass
spectrometry data analysis.” Nature Methods, 13(9), 741–748. doi:10.1038/nmeth.3959.

https://doi.org/10.1038/nmeth.3959

findFeaturesSAFD 87

pugixml (via Rcpp) is used to process OpenMS XML output.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer, New York. doi:10.1007/
9781461468684, ISBN 978-1-4614-6867-7.

Eddelbuettel D, Balamuta J (2018). “Extending R with C++: A Brief Introduction to Rcpp.” The
American Statistician, 72(1), 28-36. doi:10.1080/00031305.2017.1375990.

Eddelbuettel D, Francois R, Allaire J, Ushey K, Kou Q, Russell N, Ucar I, Bates D, Chambers J
(2025). Rcpp: Seamless R and C++ Integration. R package version 1.0.14, https://dirk.eddelbuettel.com/code/rcpp.html,
https://github.com/RcppCore/Rcpp, https://www.rcpp.org.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of Statistical
Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.1

See Also

findFeatures for more details and other algorithms.

findFeaturesSAFD Find features using SAFD

Description

Uses SAFD to obtain features. This functionality is still experimental. Please see the details below.

Usage

findFeaturesSAFD(
analysisInfo,
profPath = NULL,
mzRange = c(0, 400),
maxNumbIter = 1000,
maxTPeakW = 300,
resolution = 30000,
minMSW = 0.02,
RThreshold = 0.75,
minInt = 2000,
sigIncThreshold = 5,
S2N = 2,
minPeakWS = 3,
verbose = TRUE

)

https://pugixml.org/
http://www.rcpp.org/
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1080/00031305.2017.1375990
https://www.rcpp.org
https://doi.org/10.18637/jss.v040.i08
https://bitbucket.org/SSamanipour/safd.jl/src/master/

88 findFeaturesSAFD

Arguments

analysisInfo A data.frame with Analysis information.

profPath A character vector with paths to the profile MS data for each analysis (will be
re-cycled if necessary). See the Using SAFD section for more details.

mzRange The m/z window to be imported (passed to the import_files_MS1 function).
maxNumbIter, maxTPeakW, resolution, minMSW, RThreshold, minInt,
sigIncThreshold, S2N, minPeakWS

Parameters directly passed to the safd_s3D function.

verbose If set to FALSE then no text output is shown.

Details

This function uses SAFD to automatically find features. This function is called when calling
findFeatures with algorithm="safd".

The support for SAFD is still experimental, and its interface might change in the future.

In order to use SAFD, please make sure that its julia packages are installed and you have verified
that everything works, e.g. by running the test data.

This algorithm supports profile and centroided MS data. If the use of profile data is desired, cen-
troided data must still be available for other functionality of patRoon. The centroided data is spec-
ified through the ’regular’ analysis info mechanism. The location to any profile data is specified
through the profPath argument (NULL for no profile data). The base file names (i.e. the file name
without path and extension) of both centroid and profile data must be the same. Furthermore, the
format of the profile data must be ‘mzXML’.

Value

An object of a class which is derived from features.

Parallelization

findFeaturesSAFD uses multiprocessing to parallelize computations. Please see the parallelization
section in the handbook for more details and patRoon options for configuration options.

Note that for caching purposes, the analyses files must always exist on the local host computer, even
if it is not participating in computations.

References

Samanipour S, OBrien JW, Reid MJ, Thomas KV (2019). “Self Adjusting Algorithm for the Nontar-
geted Feature Detection of High Resolution Mass Spectrometry Coupled with Liquid Chromatogra-
phy Profile Data.” Analytical Chemistry, 91(16), 10800–10807. doi:10.1021/acs.analchem.9b02422.

See Also

findFeatures for more details and other algorithms.

https://doi.org/10.1021/acs.analchem.9b02422

findFeaturesSIRIUS 89

findFeaturesSIRIUS Find features using SIRIUS

Description

Uses SIRIUS to find features.

Usage

findFeaturesSIRIUS(analysisInfo, verbose = TRUE)

Arguments

analysisInfo A data.frame with Analysis information.

verbose If set to FALSE then no text output is shown.

Details

This function uses SIRIUS to automatically find features. This function is called when calling
findFeatures with algorithm="sirius".

The features are collected by running the lcms-align SIRIUS command for every analysis.

The MS files should be in the ‘mzML’ or ‘mzXML’ format. Furthermore, this algorithms requires the
presence of (data-dependent) MS/MS data.

The input MS data files need to be centroided. The convertMSFiles function can be used to
centroid data.

Value

An object of a class which is derived from features.

Parallelization

findFeaturesSIRIUS uses multiprocessing to parallelize computations. Please see the paralleliza-
tion section in the handbook for more details and patRoon options for configuration options.

Note that for caching purposes, the analyses files must always exist on the local host computer, even
if it is not participating in computations.

References

Duhrkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu
J, Bocker S (2019). “SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite
structure information.” Nature Methods, 16(4), 299–302. doi:10.1038/s4159201903448.

See Also

findFeatures for more details and other algorithms.

https://bio.informatik.uni-jena.de/software/sirius/
https://doi.org/10.1038/s41592-019-0344-8

90 findFeaturesXCMS

findFeaturesXCMS Find features using XCMS (old interface)

Description

Uses the legacy xcmsSet function from the xcms package to find features.

Usage

findFeaturesXCMS(analysisInfo, method = "centWave", ..., verbose = TRUE)

Arguments

analysisInfo A data.frame with Analysis information.

method The method setting used by XCMS peak finding, see xcms::findPeaks

... Further parameters passed to xcmsSet.

verbose If set to FALSE then no text output is shown.

Details

This function uses XCMS to automatically find features. This function is called when calling
findFeatures with algorithm="xcms".

This function uses the legacy interface of xcms. It is recommended to use findFeaturesXCMS3
instead.

The file format of analyses must be mzML or mzXML.

The input MS data files need to be centroided. The convertMSFiles function can be used to
centroid data.

Value

An object of a class which is derived from features.

References

Benton HP, Want EJ, Ebbels TMD (2010). “Correction of mass calibration gaps in liquid chromatography-
mass spectrometry metabolomics data.” BIOINFORMATICS, 26, 2488.

Smith, C.A., Want, E.J., O’Maille, G., Abagyan,R., Siuzdak, G. (2006). “XCMS: Processing mass
spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identifi-
cation.” Analytical Chemistry, 78, 779–787.

Tautenhahn R, Boettcher C, Neumann S (2008). “Highly sensitive feature detection for high reso-
lution LC/MS.” BMC Bioinformatics, 9, 504.

findFeaturesXCMS3 91

See Also

findFeatures for more details and other algorithms.

findFeaturesXCMS3

findFeaturesXCMS3 Find features using XCMS (new interface)

Description

Uses the new xcms3 interface from the xcms package to find features.

Usage

findFeaturesXCMS3(
analysisInfo,
param = xcms::CentWaveParam(),
...,
verbose = TRUE

)

Arguments

analysisInfo A data.frame with Analysis information.

param The method parameters used by XCMS peak finding, see xcms::findChromPeaks

... Further parameters passed to xcms::findChromPeaks.

verbose If set to FALSE then no text output is shown.

Details

This function uses XCMS3 to automatically find features. This function is called when calling
findFeatures with algorithm="xcms3".

The file format of analyses must be mzML or mzXML.

The input MS data files need to be centroided. The convertMSFiles function can be used to
centroid data.

Value

An object of a class which is derived from features.

92 formulas-class

References

Benton HP, Want EJ, Ebbels TMD (2010). “Correction of mass calibration gaps in liquid chromatography-
mass spectrometry metabolomics data.” BIOINFORMATICS, 26, 2488.

Smith, C.A., Want, E.J., O’Maille, G., Abagyan,R., Siuzdak, G. (2006). “XCMS: Processing mass
spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identifi-
cation.” Analytical Chemistry, 78, 779–787.

Tautenhahn R, Boettcher C, Neumann S (2008). “Highly sensitive feature detection for high reso-
lution LC/MS.” BMC Bioinformatics, 9, 504.

See Also

findFeatures for more details and other algorithms.

formulas-class Formula annotations class

Description

Contains data of generated chemical formulae for given feature groups.

Usage

S4 method for signature 'formulas'
annotations(obj, features = FALSE)

S4 method for signature 'formulas'
analyses(obj)

S4 method for signature 'formulas'
defaultExclNormScores(obj)

S4 method for signature 'formulas'
show(object)

S4 method for signature 'formulas,ANY,ANY'
x[[i, j]]

S4 method for signature 'formulas'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'formulas'
as.data.table(

x,
fGroups = NULL,
fragments = FALSE,

formulas-class 93

countElements = NULL,
countFragElements = NULL,
OM = FALSE,
normalizeScores = "none",
excludeNormScores = defaultExclNormScores(x),
average = FALSE

)

S4 method for signature 'formulas'
annotatedPeakList(
obj,
index,
groupName,
analysis = NULL,
MSPeakLists,
onlyAnnotated = FALSE

)

S4 method for signature 'formulas'
plotSpectrum(
obj,
index,
groupName,
analysis = NULL,
MSPeakLists,
title = NULL,
specSimParams = getDefSpecSimParams(),
mincex = 0.9,
xlim = NULL,
ylim = NULL,
...

)

S4 method for signature 'formulas'
plotScores(
obj,
index,
groupName,
analysis = NULL,
normalizeScores = "max",
excludeNormScores = defaultExclNormScores(obj)

)

S4 method for signature 'formulas'
consensus(
obj,
...,
absMinAbundance = NULL,

94 formulas-class

relMinAbundance = NULL,
uniqueFrom = NULL,
uniqueOuter = FALSE,
rankWeights = 1,
labels = NULL

)

S4 method for signature 'formulasSet'
show(object)

S4 method for signature 'formulasSet'
delete(obj, i, j, ...)

S4 method for signature 'formulasSet,ANY,missing,missing'
x[i, j, ..., sets = NULL, updateConsensus = FALSE, drop = TRUE]

S4 method for signature 'formulasSet'
filter(obj, ..., sets = NULL, updateConsensus = FALSE, negate = FALSE)

S4 method for signature 'formulasSet'
plotSpectrum(
obj,
index,
groupName,
analysis = NULL,
MSPeakLists,
title = NULL,
specSimParams = getDefSpecSimParams(),
mincex = 0.9,
xlim = NULL,
ylim = NULL,
perSet = TRUE,
mirror = TRUE,
...

)

S4 method for signature 'formulasSet'
annotatedPeakList(obj, index, groupName, analysis = NULL, MSPeakLists, ...)

S4 method for signature 'formulasSet'
consensus(
obj,
...,
absMinAbundance = NULL,
relMinAbundance = NULL,
uniqueFrom = NULL,
uniqueOuter = FALSE,
rankWeights = 1,

formulas-class 95

labels = NULL,
filterSets = FALSE,
setThreshold = 0,
setThresholdAnn = 0,
setAvgSpecificScores = FALSE

)

S4 method for signature 'formulasSet'
unset(obj, set)

S4 method for signature 'formulasConsensusSet'
unset(obj, set)

S4 method for signature 'formulasSIRIUS'
delete(obj, i = NULL, j = NULL, ...)

Arguments

obj, x, object The formulas object.

features If TRUE returns formula data for features, otherwise for feature groups.

i, j For [[: If both i and j are specified then i specifies the analysis and j the
feature group of the feature for which annotations should be returned. Otherwise
i specifies the feature group for which group annotations should be returned. i/j
can be specified as integer index or as a character name.
Otherwise passed to the featureAnnotations method.

... For plotSpectrum: Further arguments passed to plot.
For delete: passed to the function specified as j.
For consensus: Any further (and unique) formulas objects.
For sets workflow methods: further arguments passed to the base formulas
method.

fGroups, fragments, countElements, countFragElements, OM
Passed to the featureAnnotations method.

normalizeScores

A character that specifies how normalization of annotation scorings occurs.
Either "none" (no normalization), "max" (normalize to max value) or "minmax"
(perform min-max normalization). Note that normalization of negative scores
(e.g. output by SIRIUS) is always performed as min-max. Furthermore, cur-
rently normalization for compounds takes the original min/max scoring values
into account when candidates were generated. Thus, for compounds scoring,
normalization is not affected when candidate results were removed after they
were generated (e.g. by use of filter).

excludeNormScores

A character vector specifying any compound scoring names that should not
be normalized. Set to NULL to normalize all scorings. Note that whether any
normalization occurs is set by the excludeNormScores argument.
For compounds: By default score and individualMoNAScore are set to mimic
the behavior of the MetFrag web interface.

96 formulas-class

average If set to TRUE an ’average formula’ is generated for each feature group by com-
bining all elements from all candidates and averaging their amounts. This obvi-
ously leads to non-existing formulae, however, this data may be useful to deal
with multiple candidate formulae per feature group when performing elemental
characterization. Setting this to TRUE disables reporting of most other data.

index The candidate index (row). For plotSpectrum two indices can be specified to
compare spectra. In this case groupName and analysis (if not NULL) should
specify values for the spectra to compare.

groupName The name of the feature group (or feature groups when comparing spectra) to
which the candidate belongs.

analysis A character specifying the analysis (or analyses when comparing spectra) for
which the annotated spectrum should be plotted. If NULL then annotation results
for the complete feature group will be plotted.

MSPeakLists The MSPeakLists object that was used to generate the candidate
onlyAnnotated Set to TRUE to filter out any peaks that could not be annotated.
title The title of the plot. Set to NULL for an automatically generated title.
specSimParams A named list with parameters that influence the calculation of MS spectra sim-

ilarities. See the spectral similarity parameters documentation for more details.
mincex The formula annotation labels are automatically scaled. The mincex argument

forces a minimum cex value for readability.
xlim, ylim Sets the plot size limits used by plot. Set to NULL for automatic plot sizing.
absMinAbundance, relMinAbundance

Minimum absolute or relative (‘0-1’) abundance across objects for a result to be
kept. For instance, relMinAbundance=0.5 means that a result should be present
in at least half of the number of compared objects. Set to ‘NULL’ to ignore and
keep all results. Limits cannot be set when uniqueFrom is not NULL.

uniqueFrom Set this argument to only retain formulas that are unique within one or more of
the objects for which the consensus is made. Selection is done by setting the
value of uniqueFrom to a logical (values are recycled), numeric (select by
index) or a character (as obtained with algorithm(obj)). For logical and
numeric values the order corresponds to the order of the objects given for the
consensus. Set to NULL to ignore.

uniqueOuter If uniqueFrom is not NULL and if uniqueOuter=TRUE: only retain data that are
also unique between objects specified in uniqueFrom.

rankWeights A numeric vector with weights of to calculate the mean ranking score for each
candidate. The value will be re-cycled if necessary, hence, the default value of
‘1’ means equal weights for all considered objects.

labels A character with names to use for labelling. If NULL labels are automatically
generated.

sets (sets workflow) A character with name(s) of the sets to keep (or remove if
negate=TRUE). Note: if updateConsensus=FALSE then the setCoverage col-
umn of the annotation results is not updated.

updateConsensus

(sets workflow) If TRUE then the annonation consensus among set results is
updated. See the Sets workflows section for more details.

formulas-class 97

drop Passed to the featureAnnotations method.

negate Passed to the featureAnnotations method.

perSet, mirror (sets workflow) If perSet=TRUE then the set specific mass peaks are annotated
separately. Furthermore, if mirror=TRUE (and there are two sets in the object)
then a mirror plot is generated.

filterSets (sets workflow) Controls how algorithms concensus abundance filters are ap-
plied. See the Sets
workflows section below.

setThreshold, setThresholdAnn
(sets workflow) Thresholds used to create the annotation set consensus. See
generateFormulas.

setAvgSpecificScores

(sets workflow) If TRUE then set specific annotation scores (e.g. MS/MS and iso-
topic pattern match scores) are averaged for the set consensus. See generateFormulas.

set (sets workflow) The name of the set.

Details

formulas objects are obtained with generateFormulas. This class is derived from the featureAnnotations
class, please see its documentation for more methods and other details.

Value

annotations returns a list containing for each feature group (or feature if features=TRUE) a
data.table with an overview of all generated formulae and other data such as candidate scoring
and MS/MS fragments.

consensus returns a formulas object that is produced by merging results from multiple formulas
objects.

Methods (by generic)

• annotations(formulas): Accessor method to obtain generated formulae.

• analyses(formulas): returns a character vector with the names of the analyses for which
data is present in this object.

• defaultExclNormScores(formulas): Returns default scorings that are excluded from nor-
malization.

• show(formulas): Show summary information for this object.

• x[[i: Extracts a formula table, either for a feature group or for features in an analysis.

• as.data.table(formulas): Generates a table with all candidate formulae for each feature
group and other information such as element counts.

• annotatedPeakList(formulas): Returns an MS/MS peak list annotated with data from a
given candidate formula.

• plotSpectrum(formulas): Plots an annotated spectrum for a given candidate formula of a
feature or feature group. Two spectra can be compared by specifying a two-sized vector for
the index, groupName and (if desired) analysis arguments.

98 formulas-class

• plotScores(formulas): Plots a barplot with scoring of a candidate formula.

• consensus(formulas): Generates a consensus of results from multiple objects. In order to
rank the consensus candidates, first each of the candidates are scored based on their original
ranking (the scores are normalized and the highest ranked candidate gets value ‘1’). The
(weighted) mean is then calculated for all scorings of each candidate to derive the final ranking
(if an object lacks the candidate its score will be ‘0’). The original rankings for each object is
stored in the rank columns.

Slots

featureFormulas A list with all generated formulae for each analysis/feature group. Use the
annotations method for access.

setThreshold,setThresholdAnn,setAvgSpecificScores (sets workflow) A copy of the equally
named arguments that were passed when this object was created by generateFormulas.

origFGNames (sets workflow) The original (order of) names of the featureGroups object that
was used to create this object.

S4 class hierarchy

• featureAnnotations

– formulas

* formulasConsensus

* formulasSet

· formulasConsensusSet

* formulasUnset

* formulasSIRIUS

Source

Subscripting of formulae for plots generated by plotSpectrum is based on the chemistry2expression
function from the ReSOLUTION package.

Sets workflows

The formulasSet class is applicable for sets workflows. This class is derived from formulas and
therefore largely follows the same user interface.

The following methods are specifically defined for sets workflows:

• All the methods from base class workflowStepSet.

• unset Converts the object data for a specified set into a ’non-set’ object (formulasUnset),
which allows it to be used in ’regular’ workflows. Only the annotation results that are present
in the specified set are kept (based on the set consensus, see below for implications).

The following methods are changed or with new functionality:

• filter and the subset operator ([) Can be used to select data that is only present for selected
sets. Depending on the updateConsenus, both either operate on set consensus or original data
(see below for implications).

https://github.com/schymane/ReSOLUTION

formulaScorings 99

• annotatedPeakList Returns a combined annotation table with all sets.

• plotSpectrum Is able to highlight set specific mass peaks (perSet and mirror arguments).

• consensus Creates the algorithm consensus based on the original annotation data (see below
for implications). Then, like the sets workflow method for generateFormulas, a consensus
is made for all sets, which can be controlled with the setThreshold and setThresholdAnn
arguments. The candidate coverage among the different algorithms is calculated for each set
(e.g. coverage-positive column) and for all sets (coverage column), which is based on the
presence of a candidate in all the algorithms from all sets data. The consensus method for sets
workflow data supports the filterSets argument. This controls how the algorithm consensus
abundance filters (absMinAbundance/relMinAbundance) are applied: if filterSets=TRUE
then the minimum of all coverage set specific columns is used to obtain the algorithm abun-
dance. Otherwise the overall coverage column is used. For instance, consider a consensus
object to be generated from two objects generated by different algorithms (e.g. SIRIUS and
GenForm), which both have a positive and negative set. Then, if a candidate occurs with both
algorithms for the positive mode set, but only with the first algorithm in the negative mode
set, relMinAbundance=1 will remove the candidate if filterSets=TRUE (because the min-
imum relative algorithm abundance is ‘0.5’), while filterSets=FALSE will not remove the
candidate (because based on all sets data the candidate occurs in both algorithms).

Two types of annotation data are stored in a formulasSet object:

1. Annotations that are produced from a consensus between set results (see generateFormulas).

2. The ’original’ annotation data per set, prior to when the set consensus was made. This in-
cludes candidates that were filtered out because of the thresholds set by setThreshold and
setThresholdAnn. However, when filter or subsetting ([) operations are performed, the
original data is also updated.

In most cases the first data is used. However, in a few cases the original annotation data is used
(as indicated above), for instance, to re-create the set consensus. It is important to realize that the
original annotation data may have additional candidates, and a newly created set consensus may
therefore have ’new’ candidates. For instance, when the object consists of the sets "positive" and
"negative" and setThreshold=1 was used to create it, then formulas[, sets = "positive",
updateConsensus = TRUE] may now have additional candidates, i.e. those that were not present in
the "negative" set and were previously removed due to the consensus threshold filter.

See Also

The featureAnnotations base class for more relevant methods and generateFormulas.

formulaScorings Scorings terms for formula candidates

Description

Returns a data.frame with information on which scoring terms are used and what their algorithm
specific name is.

100 formulasSIRIUS-class

Usage

formulaScorings()

See Also

generateFormulas

formulasSIRIUS-class Formulas class for SIRIUS results.

Description

This class is derived from formulas and contains additional specific SIRIUS data.

Details

Objects from this class are generated by generateFormulasSIRIUS

Slots

fingerprints A list with for each feature group result a data.table containing fingerprints ob-
tained with CSI:FingerID. Will be empty unless the getFingerprints argument to generateFormulasSIRIUS
was set to TRUE.

MS2QuantMeta Metadata from MS2Quant filled in by predictRespFactors.

S4 class hierarchy

• formulas

– formulasSIRIUS

References

Duhrkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu
J, Bocker S (2019). “SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite struc-
ture information.” Nature Methods, 16(4), 299–302. doi:10.1038/s4159201903448.

Duhrkop K, Bocker S (2015). “Fragmentation Trees Reloaded.” In Przytycka TM (ed.), Research
in Computational Molecular Biology, 65–79. ISBN 978-3-319-16706-0.

Duhrkop K, Shen H, Meusel M, Rousu J, Bocker S (2015). “Searching molecular structure databases
with tandem mass spectra using CSI:FingerID.” Proceedings of the National Academy of Sciences,
112(41), 12580–12585. doi:10.1073/pnas.1509788112.

Bocker S, Letzel MC, Liptak Z, Pervukhin A (2008). “SIRIUS: decomposing isotope patterns
for metabolite identification.” Bioinformatics, 25(2), 218–224. doi:10.1093/bioinformatics/btn603.

https://doi.org/10.1038/s41592-019-0344-8
https://doi.org/10.1073/pnas.1509788112
https://doi.org/10.1093/bioinformatics/btn603

generateComponents 101

See Also

formulas and generateFormulasSIRIUS

generateComponents Grouping feature groups in components

Description

Functionality to automatically group related feature groups (e.g. isotopes, adducts and homologues)
to assist and simplify annotation.

Usage

generateComponents(fGroups, algorithm, ...)

S4 method for signature 'featureGroups'
generateComponents(fGroups, algorithm, ...)

Arguments

fGroups featureGroups object for which components should be generated.

algorithm A character string describing the algorithm that should be used: "ramclustr",
"camera", "nontarget", "intclust", "openms", "cliquems", "specclust",
"tp"

... Any parameters to be passed to the selected component generation algorithm.

Details

Several algorithms are provided to group feature groups that are related in some (chemical) way to
each other. How feature groups are related depends on the algorithm: examples include adducts,
statistics and parents/transformation products. The linking of this data is generally useful for anno-
tation purposes and reducing data complexity.

generateComponents is a generic function that will generateComponents by one of the supported
algorithms. The actual functionality is provided by algorithm specific functions such as generateComponentsRAMClustR
and generateComponentsNontarget. While these functions may be called directly, generateComponents
provides a generic interface and is therefore usually preferred.

Value

A components (derived) object containing all generated components.

Sets workflows

In a sets workflow the componentization data is generated differently depending on the used algo-
rithm. Please see the details in the algorithm specific functions linked in the See Also section.

102 generateComponentsCAMERA

See Also

The components output class and its methods and the algorithm specific functions: generateComponentsRAMClustR,
generateComponentsCAMERA, generateComponentsNontarget, generateComponentsIntClust,
generateComponentsOpenMS, generateComponentsCliqueMS, generateComponentsSpecClust,
generateComponentsTPs

generateComponentsCAMERA

Componentization of adducts, isotopes etc. with CAMERA

Description

Interfaces with CAMERA to generate components from known adducts, isotopes and in-source
fragments.

Usage

generateComponentsCAMERA(fGroups, ...)

S4 method for signature 'featureGroups'
generateComponentsCAMERA(

fGroups,
ionization = NULL,
onlyIsotopes = FALSE,
minSize = 2,
relMinReplicates = 0.5,
extraOpts = NULL

)

S4 method for signature 'featureGroupsSet'
generateComponentsCAMERA(fGroups, ionization = NULL, ...)

Arguments

fGroups featureGroups object for which components should be generated.

... (sets workflow) Further arguments passed to the non-sets workflow method.

ionization Which ionization polarity was used to generate the data: should be "positive"
or "negative". If the featureGroups object has adduct annotations, and ionization=NULL,
the ionization will be detected automatically.
(sets workflow) This parameter is not supported for sets workflows, as the ion-
ization will always be detected automatically.

onlyIsotopes Logical value. If TRUE only isotopes are considered when generating compo-
nents (faster). Corresponds to quick argument of CAMERA::annotate.

minSize The minimum size of a component. Smaller components than this size will be
removed. See note below.

https://bioconductor.org/packages/release/bioc/html/CAMERA.html

generateComponentsCAMERA 103

relMinReplicates

Feature groups within a component are only kept when they contain data for
at least this (relative) amount of replicate analyses. For instance, ‘0.5’ means
that at least half of the replicates should contain data for a particular feature
group in a component. In this calculation replicates that are fully absent within
a component are not taken in to account. See note below.

extraOpts Named character vector with extra arguments directly passed to CAMERA::annotate.
Set to NULL to ignore.

Details

This function uses CAMERA to generate components. This function is called when calling generateComponents
with algorithm="camera".

The specified featureGroups object is automatically converted to an xcmsSet object using getXCMSSet.

Value

A components (derived) object containing all generated components.

Sets workflows

In a sets workflow the componentization is first performed for each set independently. The re-
sulting components are then all combined in a componentsSet object. Note that the components
themselves are never merged. The components are renamed to include the set name from which
they were generated (e.g. "CMP1" becomes "CMP1-positive").

Note

The default value for minSize and relMinReplicates results in extra filtering, hence, the final
results may be different than what the algorithm normally would return.

References

Kuhl C, Tautenhahn R, Boettcher C, Larson TR, Neumann S (2012). “CAMERA: an integrated
strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrom-
etry data sets.” Analytical Chemistry, 84, 283–289. http://pubs.acs.org/doi/abs/10.1021/
ac202450g.

See Also

generateComponents for more details and other algorithms.

http://pubs.acs.org/doi/abs/10.1021/ac202450g
http://pubs.acs.org/doi/abs/10.1021/ac202450g

104 generateComponentsCliqueMS

generateComponentsCliqueMS

Componentization of adducts, isotopes etc. with cliqueMS

Description

Uses cliqueMS to generate components using the cliqueMS::getCliques function.

Usage

generateComponentsCliqueMS(fGroups, ...)

S4 method for signature 'featureGroups'
generateComponentsCliqueMS(

fGroups,
ionization = NULL,
maxCharge = 1,
maxGrade = 2,
ppm = 10,
adductInfo = NULL,
absMzDev = 0.005,
minSize = 2,
relMinAdductAbundance = 0.75,
adductConflictsUsePref = TRUE,
NMConflicts = c("preferential", "mostAbundant", "mostIntense"),
prefAdducts = c("[M+H]+", "[M-H]-"),
extraOptsCli = NULL,
extraOptsIso = NULL,
extraOptsAnn = NULL,
parallel = TRUE

)

S4 method for signature 'featureGroupsSet'
generateComponentsCliqueMS(fGroups, ionization = NULL, ...)

Arguments

fGroups featureGroups object for which components should be generated.

... (sets workflow) Further arguments passed to the non-sets workflow method.

ionization Which ionization polarity was used to generate the data: should be "positive"
or "negative". If the featureGroups object has adduct annotations, and ionization=NULL,
the ionization will be detected automatically.
(sets workflow) This parameter is not supported for sets workflows, as the ion-
ization will always be detected automatically.

maxCharge, maxGrade, ppm
Arguments passed to cliqueMS::getIsotopes and/or cliqueMS::getAnnotation.

https://github.com/osenan/cliqueMS

generateComponentsCliqueMS 105

adductInfo Sets the adinfo argument to cliqueMS::getAnnotation. If NULL then the de-
fault adduct information from cliqueMS is used (i.e. the positive.adinfo/negative.adinfo
package datasets).

absMzDev Maximum absolute m/z deviation.
minSize The minimum size of a component. Smaller components than this size will be

removed. See note below.
relMinAdductAbundance

The minimum relative abundance (‘0-1’) that an adduct should be assigned to
features within the same feature group. See the Feature components section
for more details.

adductConflictsUsePref

If set to TRUE, and not all adduct assigments to the features within a feature group
are equal and at least one of those adducts is a preferential adduct (prefAdducts
argument), then only the features with (the lowest ranked) preferential adduct
are considered. In all other cases or when adductConflictsUsePref=FALSE
only features with the most frequently assigned adduct is considered. See the
Feature components section for more details.

NMConflicts The strategies to employ when not all neutral masses within a component are
equal. Valid options are: "preferential", "mostAbundant" and "mostIntense".
Multiple strategies are possible, and will be executed in the given order until one
succeeds. See the Feature components section for more details.

prefAdducts A character vector with one or more preferential adducts. See the Feature
components section for more details.

extraOptsCli, extraOptsIso, extraOptsAnn
Named list with further arguments to be passed to cliqueMS::getCliques,
cliqueMS::getIsotopes and cliqueMS::getAnnotation, respectively. Set
to NULL to ignore.

parallel If set to TRUE then code is executed in parallel through the futures package.
Please see the parallelization section in the handbook for more details.

Details

This function uses cliqueMS to generate components. This function is called when calling generateComponents
with algorithm="cliquems".

The grouping of features in each component (’clique’) is based on high similarity of chromato-
graphic elution profiles. All features in each component are then annotated with the cliqueMS::getIsotopes
and cliqueMS::getAnnotation functions.

Value

A componentsFeatures derived object.

Feature components

The returned components are based on so called feature components. Unlike other algorithms,
components are first made on a feature level (per analysis), instead of for complete feature groups.
In the final step the feature components are converted to ’regular’ components by employing a
consensus approach with the following steps:

https://CRAN.R-project.org/package=futures

106 generateComponentsIntClust

1. If an adduct assigned to a feature only occurs as a minority compared to other adduct assig-
ments within the same feature group, it is considered as an outlier and removed accordingly
(controlled by the relMinAdductAbundance argument).

2. For features within a feature group, only keep their adduct assignment if it occurs as the
most frequent or is preferential (controlled by adductConflictsUsePref and prefAdducts
arguments).

3. Components are made by combining the feature groups for which at least one of their features
are jointly present in the same feature component.

4. Conflicts of neutral mass assignments within a component (i.e. not all are the same) are dealt
with. Firstly, all feature groups with an unknown neutral mass are split in another component.
Then, if conflicts still occur, the feature groups with similar neutral mass (determined by
absMzDev argument) are grouped. Depending on the NMConflicts argument, the group with
one or more preferential adduct(s) or that is the largest or most intense is selected, whereas
others are removed from the component. In case multiple groups contain preferential adducts,
and ‘>1’ preferential adducts are available, the group with the adduct that matches first in
prefAdducts ’wins’. In case of ties, one of the next strategies in NMConflicts is tried.

5. If a feature group occurs in multiple components it will be removed completely.

6. the minSize filter is applied.

Sets workflows

In a sets workflow the componentization is first performed for each set independently. The re-
sulting components are then all combined in a componentsSet object. Note that the components
themselves are never merged. The components are renamed to include the set name from which
they were generated (e.g. "CMP1" becomes "CMP1-positive").

References

Senan O, Aguilar-Mogas A, Navarro M, Capellades J, Noon L, Burks D, Yanes O, Guimera R,
Sales-Pardo M (2019). “CliqueMS: a computational tool for annotating in-source metabolite ions
from LC-MS untargeted metabolomics data based on a coelution similarity network.” Bioinformat-
ics, 35(20), 4089–4097. doi:10.1093/bioinformatics/btz207.

See Also

generateComponents for more details and other algorithms.

generateComponentsIntClust

Generate components based on intensity profiles

Description

Generates components based on intensity profiles of feature groups.

https://doi.org/10.1093/bioinformatics/btz207

generateComponentsIntClust 107

Usage

generateComponentsIntClust(fGroups, ...)

S4 method for signature 'featureGroups'
generateComponentsIntClust(

fGroups,
method = "complete",
metric = "euclidean",
normalized = TRUE,
average = TRUE,
maxTreeHeight = 1,
deepSplit = TRUE,
minModuleSize = 1

)

Arguments

fGroups featureGroups object for which components should be generated.

... Any parameters to be passed to the selected component generation algorithm.

method Clustering method that should be applied (passed to fastcluster::hclust).

metric Distance metric used to calculate the distance matrix (passed to daisy).

normalized, average
Passed to as.data.table to perform normalization and averaging of data.

maxTreeHeight, deepSplit, minModuleSize
Arguments used by cutreeDynamicTree.

Details

This function uses hierarchical clustering of intensity profiles to generate components. This function
is called when calling generateComponents with algorithm="intclust".

Hierarchical clustering is performed on normalized (and optionally replicate averaged) intensity
data and the resulting dendrogram is automatically cut with cutreeDynamicTree. The distance
matrix is calculated with daisy and clustering is performed with fastcluster::hclust. The
clustering of the resulting components can be further visualized and modified using the methods
defined for componentsIntClust.

Value

The components are stored in objects derived from componentsIntClust.

Sets workflows

In a sets workflow normalization of feature intensities occur per set.

108 generateComponentsNontarget

References

Müllner D (2013). “fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and
Python.” Journal of Statistical Software, 53(9), 1–18. doi:10.18637/jss.v053.i09.

Schollee JE, Bourgin M, von Gunten U, McArdell CS, Hollender J (2018). “Non-target screening
to trace ozonation transformation products in a wastewater treatment train including different post-
treatments.” Water Research, 142, 267–278. doi:10.1016/j.watres.2018.05.045.

See Also

generateComponents for more details and other algorithms.

generateComponentsNontarget

Componentization of homologous series with nontarget

Description

Uses the nontarget R package to generate components by unsupervised detection of homologous
series.

Usage

generateComponentsNontarget(fGroups, ...)

S4 method for signature 'featureGroups'
generateComponentsNontarget(

fGroups,
ionization = NULL,
rtRange = c(-120, 120),
mzRange = c(5, 120),
elements = c("C", "H", "O"),
rtDev = 30,
absMzDev = 0.002,
absMzDevLink = absMzDev * 2,
traceHack = all(R.Version()[c("major", "minor")] >= c(3, 4)),
...

)

S4 method for signature 'featureGroupsSet'
generateComponentsNontarget(fGroups, ionization = NULL, ...)

Arguments

fGroups featureGroups object for which components should be generated.

... Any further arguments passed to homol.search.

(sets workflow) Further arguments passed to the non-sets workflow method.

https://doi.org/10.18637/jss.v053.i09
https://doi.org/10.1016/j.watres.2018.05.045
https://cran.r-project.org/web/packages/nontarget/index.html

generateComponentsNontarget 109

ionization Which ionization polarity was used to generate the data: should be "positive"
or "negative". If the featureGroups object has adduct annotations, and ionization=NULL,
the ionization will be detected automatically.

(sets workflow) This parameter is not supported for sets workflows, as the ion-
ization will always be detected automatically.

rtRange A numeric vector containing the minimum and maximum retention time (in sec-
onds) between homologues. Series are always considered from low to high m/z,
thus, a negative minimum retention time allows detection of homologous series
with increasing m/z and decreasing retention times. These values set the minrt
and maxrt arguments of homol.search.

mzRange A numeric vector specifying the minimum and maximum m/z increment of a
homologous series. Sets the minmz and maxmz arguments of homol.search.

elements A character vector with elements to be considered for detection of repeating
units. Sets the elements argument of homol.search function.

rtDev Maximum retention time deviation. Sets the rttol to homol.search.

absMzDev Maximum absolute m/z deviation. Sets the mztol argument to homol.search

absMzDevLink Maximum absolute m/z deviation when linking series. This should usually be a
bit higher than absMzDev to ensure proper linkage.

traceHack Currently homol.search does not work with R ‘>3.3.3’. This flag, which is
enabled by default on these R versions, implements a (messy) workaround (more
details here).

Details

This function uses nontarget to generate components. This function is called when calling generateComponents
with algorithm="nontarget".

In the first step the homol.search function is used to detect all homologous series within each
replicate group (analyses within each replicate group are averaged prior to detection). Then, ho-
mologous series across replicate groups are merged in case of full overlap or when merging of
partial overlapping series causes no conflicts.

Value

The generated comnponents are returned as an object from the componentsNT class.

Sets workflows

In a sets workflow the componentization is first performed for each set independently. The resulting
components are then all combined in a componentsNTSet object. Note that the components them-
selves are never merged. The components are renamed to include the set name from which they
were generated (e.g. "CMP1" becomes "CMP1-positive").

The output class supports additional methods such as plotGraph.

https://github.com/blosloos/nontarget/issues/6
https://github.com/blosloos/nontarget/issues/6

110 generateComponentsOpenMS

References

Loos M, Singer H (2017). “Nontargeted homologue series extraction from hyphenated high resolu-
tion mass spectrometry data.” Journal of Cheminformatics, 9(1). doi:10.1186/s133210170197z.

Loos M, Gerber C, Corona F, Hollender J, Singer H (2015). “Accelerated Isotope Fine Structure
Calculation Using Pruned Transition Trees.” Analytical Chemistry, 87(11), 5738-5744. https:
//pubs.acs.org/doi/abs/10.1021/acs.analchem.5b00941.

See Also

generateComponents for more details and other algorithms.

generateComponentsOpenMS

Componentization of adducts, isotopes etc. with OpenMS

Description

Uses the MetaboliteAdductDecharger utility (see http://www.openms.de) to generate compo-
nents.

Usage

generateComponentsOpenMS(fGroups, ...)

S4 method for signature 'featureGroups'
generateComponentsOpenMS(

fGroups,
ionization = NULL,
chargeMin = 1,
chargeMax = 1,
chargeSpan = 3,
qTry = "heuristic",
potentialAdducts = NULL,
minRTOverlap = 0.66,
retWindow = 1,
absMzDev = 0.005,
minSize = 2,
relMinAdductAbundance = 0.75,
adductConflictsUsePref = TRUE,
NMConflicts = c("preferential", "mostAbundant", "mostIntense"),
prefAdducts = c("[M+H]+", "[M-H]-"),
extraOpts = NULL

)

S4 method for signature 'featureGroupsSet'
generateComponentsOpenMS(

https://doi.org/10.1186/s13321-017-0197-z
https://pubs.acs.org/doi/abs/10.1021/acs.analchem.5b00941
https://pubs.acs.org/doi/abs/10.1021/acs.analchem.5b00941
https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_MetaboliteAdductDecharger.html
http://www.openms.de

generateComponentsOpenMS 111

fGroups,
ionization = NULL,
chargeMin = 1,
chargeMax = 1,
chargeSpan = 3,
qTry = "heuristic",
potentialAdducts = NULL,
...

)

Arguments

fGroups featureGroups object for which components should be generated.

... (sets workflow) Further arguments passed to the non-sets workflow method.

ionization Which ionization polarity was used to generate the data: should be "positive"
or "negative". If the featureGroups object has adduct annotations, and ionization=NULL,
the ionization will be detected automatically.
(sets workflow) This parameter is not supported for sets workflows, as the ion-
ization will always be detected automatically.

chargeMin, chargeMax
The minimum/maximum charge to consider. Corresponds to the algorithm:MetaboliteFeatureDeconvolution:charge_min/algorithm:MetaboliteFeatureDeconvolution:charge_min
options.

chargeSpan The maximum charge span for a single analyte. Corresponds to algorithm:MetaboliteFeatureDeconvolution:charge_span_max.

qTry Sets how charges are determined. Corresponds to algorithm:MetaboliteFeatureDeconvolution:q_try.
Valid options are "heuristic" and "all" (the "feature" option from OpenMS
is currently not supported).

potentialAdducts

The adducts to consider. Should be a numeric vector with probabilities for each
adduct, e.g. potentialAdducts=c("[M+H]+" = 0.8, "[M+Na]+" = 0.2). Note
that the sum of probabilities should always be ‘1’. Furthermore, note that ad-
ditions of multiple adducts should be controlled by the chargeMin/chargeMax
arguments (and not with potentialAdducts), e.g. if chargeMax=2 then both
[M+H]+ and [2M+H]2+ may be considered. Please see the algorithm:MetaboliteFeatureDeconvolution:potential_adducts
option of MetaboliteAdductDecharger for more details. If NULL then the a de-
fault is chosen with defaultOpenMSAdducts (which is not the same as OpenMS).
(sets workflow) Should be a list where each entry specifies the potential adducts
for a set. Should either be named with the sets names or follow the same order as
sets(fGroups). Example: potentialAdducts=list(positive=c("[M+H]+"
= 0.8, "[M+Na]+" = 0.2), negative=c("[M-H]-" = 0.8, "[M-H2O-H]-" = 0.2))

minRTOverlap, retWindow
Sets feature retention tolerances when grouping features. Sets the "algorithm:MetaboliteFeatureDeconvolution:retention_max_diff"
and algorithm:MetaboliteFeatureDeconvolution:min_rt_overlap options.

absMzDev Maximum absolute m/z deviation. Sets the algorithm:MetaboliteFeatureDeconvolution:mass_max_diff
option

minSize The minimum size of a component. Smaller components than this size will be
removed. See note below.

https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_MetaboliteAdductDecharger.html

112 generateComponentsOpenMS

relMinAdductAbundance

The minimum relative abundance (‘0-1’) that an adduct should be assigned to
features within the same feature group. See the Feature components section
for more details.

adductConflictsUsePref

If set to TRUE, and not all adduct assigments to the features within a feature group
are equal and at least one of those adducts is a preferential adduct (prefAdducts
argument), then only the features with (the lowest ranked) preferential adduct
are considered. In all other cases or when adductConflictsUsePref=FALSE
only features with the most frequently assigned adduct is considered. See the
Feature components section for more details.

NMConflicts The strategies to employ when not all neutral masses within a component are
equal. Valid options are: "preferential", "mostAbundant" and "mostIntense".
Multiple strategies are possible, and will be executed in the given order until one
succeeds. See the Feature components section for more details.

prefAdducts A character vector with one or more preferential adducts. See the Feature
components section for more details.

extraOpts Named character vector with extra command line parameters directly passed to
MetaboliteAdductDecharger. Set to NULL to ignore.

Details

This function uses OpenMS to generate components. This function is called when calling generateComponents
with algorithm="openms".

Features that show highly similar chromatographic elution profiles are grouped, and subsequently
annotated with their adducts.

Value

A componentsFeatures derived object.

Feature components

The returned components are based on so called feature components. Unlike other algorithms,
components are first made on a feature level (per analysis), instead of for complete feature groups.
In the final step the feature components are converted to ’regular’ components by employing a
consensus approach with the following steps:

1. If an adduct assigned to a feature only occurs as a minority compared to other adduct assig-
ments within the same feature group, it is considered as an outlier and removed accordingly
(controlled by the relMinAdductAbundance argument).

2. For features within a feature group, only keep their adduct assignment if it occurs as the
most frequent or is preferential (controlled by adductConflictsUsePref and prefAdducts
arguments).

3. Components are made by combining the feature groups for which at least one of their features
are jointly present in the same feature component.

generateComponentsRAMClustR 113

4. Conflicts of neutral mass assignments within a component (i.e. not all are the same) are dealt
with. Firstly, all feature groups with an unknown neutral mass are split in another component.
Then, if conflicts still occur, the feature groups with similar neutral mass (determined by
absMzDev argument) are grouped. Depending on the NMConflicts argument, the group with
one or more preferential adduct(s) or that is the largest or most intense is selected, whereas
others are removed from the component. In case multiple groups contain preferential adducts,
and ‘>1’ preferential adducts are available, the group with the adduct that matches first in
prefAdducts ’wins’. In case of ties, one of the next strategies in NMConflicts is tried.

5. If a feature group occurs in multiple components it will be removed completely.

6. the minSize filter is applied.

Sets workflows

In a sets workflow the componentization is first performed for each set independently. The re-
sulting components are then all combined in a componentsSet object. Note that the components
themselves are never merged. The components are renamed to include the set name from which
they were generated (e.g. "CMP1" becomes "CMP1-positive").

Parallelization

generateComponentsOpenMS uses multiprocessing to parallelize computations. Please see the par-
allelization section in the handbook for more details and patRoon options for configuration options.

References

Bielow C, Ruzek S, Huber CG, Reinert K (2010). “Optimal Decharging and Clustering of Charge
Ladders Generated in ESI-MS.” Journal of Proteome Research, 9(5), 2688–2695. doi:10.1021/
pr100177k.

See Also

generateComponents for more details and other algorithms.

generateComponentsRAMClustR

Componentization of adducts, isotopes etc. with RAMClustR

Description

Uses RAMClustR to generate components from feature groups which follow similar chromato-
graphic retention profiles and annotate their relationships (e.g. adducts and isotopes).

https://doi.org/10.1021/pr100177k
https://doi.org/10.1021/pr100177k
https://github.com/cbroeckl/RAMClustR

114 generateComponentsRAMClustR

Usage

generateComponentsRAMClustR(fGroups, ...)

S4 method for signature 'featureGroups'
generateComponentsRAMClustR(

fGroups,
ionization = NULL,
st = NULL,
sr = NULL,
maxt = 12,
hmax = 0.3,
normalize = "TIC",
absMzDev = 0.002,
relMzDev = 5,
minSize = 2,
relMinReplicates = 0.5,
RCExperimentVals = list(design = list(platform = "LC-MS"), instrument = list(ionization

= ionization, MSlevs = 1)),
extraOptsRC = NULL,
extraOptsFM = NULL

)

S4 method for signature 'featureGroupsSet'
generateComponentsRAMClustR(fGroups, ionization = NULL, ...)

Arguments

fGroups featureGroups object for which components should be generated.

... (sets workflow) Further arguments passed to the non-sets workflow method.

ionization Which ionization polarity was used to generate the data: should be "positive"
or "negative". If the featureGroups object has adduct annotations, and ionization=NULL,
the ionization will be detected automatically.
(sets workflow) This parameter is not supported for sets workflows, as the ion-
ization will always be detected automatically.

st, sr, maxt, hmax, normalize
Arguments to tune the behaviour of feature group clustering. See their docu-
mentation from ramclustR. When st is NULL it will be automatically calculated
as the half of the median for all chromatographic peak widths.

absMzDev Maximum absolute m/z deviation. Sets the mzabs.error argument to do.findmain

relMzDev Maximum relative mass deviation (PPM). Sets the ppm.error argument to
do.findmain.

minSize The minimum size of a component. Smaller components than this size will be
removed. See note below. Sets the minModuleSize argument to ramclustR.

relMinReplicates

Feature groups within a component are only kept when they contain data for
at least this (relative) amount of replicate analyses. For instance, ‘0.5’ means

generateComponentsRAMClustR 115

that at least half of the replicates should contain data for a particular feature
group in a component. In this calculation replicates that are fully absent within
a component are not taken in to account. See note below.

RCExperimentVals

A named list containing two more lists: design and instrument. These are
used to construct the ExpDes argument passed to ramclustR.

extraOptsRC, extraOptsFM
Named list with further arguments to be passed to ramclustR and do.findmain.
Set to NULL to ignore.

Details

This function uses RAMClustR to generate components. This function is called when calling
generateComponents with algorithm="ramclustr".

This method uses the ramclustR functions for generating the components, whereas do.findmain
is used for annotation.

Value

A components (derived) object containing all generated components.

Sets workflows

In a sets workflow the componentization is first performed for each set independently. The re-
sulting components are then all combined in a componentsSet object. Note that the components
themselves are never merged. The components are renamed to include the set name from which
they were generated (e.g. "CMP1" becomes "CMP1-positive").

Note

The default value for relMinReplicates results in extra filtering, hence, the final results may be
different than what the algorithm normally would return.

References

Broeckling, Heuberger CD;, Prince AL;, Ingelsson JA;, Prenni E;, E. J (2013). “Assigning precursor-
product ion relationships in indiscriminant MS/MS data from non-targeted metabolite profiling
studies.” Analytical Chemistry, 9, 33-43.

Broeckling CD, Afsar FA, Neumann S, Ben-Hur A, Prenni JE (2014). “RAMClust: A Novel
Feature Clustering Method Enables Spectral-Matching-Based Annotation for Metabolomics Data.”
Analytical Chemistry, 86 (14), 6812–6817.

See Also

generateComponents for more details and other algorithms.

116 generateComponentsSpecClust

generateComponentsSpecClust

Generate components based on MS/MS similarity

Description

Generates components based on MS/MS similarity between feature groups.

Usage

generateComponentsSpecClust(fGroups, ...)

S4 method for signature 'featureGroups'
generateComponentsSpecClust(

fGroups,
MSPeakLists,
method = "complete",
specSimParams = getDefSpecSimParams(),
maxTreeHeight = 1,
deepSplit = TRUE,
minModuleSize = 1

)

Arguments

fGroups featureGroups object for which components should be generated.

... Any parameters to be passed to the selected component generation algorithm.

MSPeakLists The MSPeakLists object for the given feature groups that should be used for
MS spectral similarity calculations.

method Clustering method that should be applied (passed to fastcluster::hclust).

specSimParams A named list with parameters that influence the calculation of MS spectra sim-
ilarities. See the spectral similarity parameters documentation for more details.

maxTreeHeight, deepSplit, minModuleSize
Arguments used by cutreeDynamicTree.

Details

This function uses hierarchical clustering of MS/MS spectra to generate components. This function
is called when calling generateComponents with algorithm="specclust".

The similarities are converted to a distance matrix and used as input for hierarchical clustering,
and the resulting dendrogram is automatically cut with cutreeDynamicTree. The clustering is
performed with fastcluster::hclust.

Value

The components are stored in objects derived from componentsSpecClust.

generateComponentsTPs 117

Sets workflows

In a sets workflow the spectral similarities for each set are combined as is described for the spectrumSimilarity
method for sets workflows.

Author(s)

Rick Helmus <<r.helmus@uva.nl>> and Bas van de Velde (major contributions to spectral binning
and similarity calculation).

References

Müllner D (2013). “fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and
Python.” Journal of Statistical Software, 53(9), 1–18. doi:10.18637/jss.v053.i09.

See Also

generateComponents for more details and other algorithms.

generateComponentsTPs Generate components of transformation products

Description

Generates components by linking feature groups of transformation products and their parents.

Usage

generateComponentsTPs(fGroups, ...)

S4 method for signature 'featureGroups'
generateComponentsTPs(

fGroups,
fGroupsTPs = fGroups,
ignoreParents = FALSE,
TPs = NULL,
MSPeakLists = NULL,
formulas = NULL,
compounds = NULL,
minRTDiff = 20,
specSimParams = getDefSpecSimParams()

)

S4 method for signature 'featureGroupsSet'
generateComponentsTPs(
fGroups,
fGroupsTPs = fGroups,
ignoreParents = FALSE,

https://doi.org/10.18637/jss.v053.i09

118 generateComponentsTPs

TPs = NULL,
MSPeakLists = NULL,
formulas = NULL,
compounds = NULL,
minRTDiff = 20,
specSimParams = getDefSpecSimParams()

)

Arguments

fGroups The input featureGroups for componentization. See fGroupsTPs.

... Further arguments specified to the methods.

fGroupsTPs A featureGroups object containing the feature groups that are expected to be
transformation products. If a distinction between parents and TPs is not yet
known, fGroupsTPs should equal the fGroups argument. Otherwise, fGroups
should only contain the parent feature groups, and both fGroups and fGroupsTPs
must be a subset of the same featureGroups object.

ignoreParents If TRUE then feature groups present in both fGroups and fGroupsTPs are not
considered as TPs.

TPs A transformationProducts object. Set to NULL to perform linking without
this data.

MSPeakLists, formulas, compounds
A MSPeakLists/formulas/compounds object to calculate MS/MS or annotation
similarities between parents and TPs. If NULL then this data is not calculated.
For more details see the Linking parents and transformation products
section below.

minRTDiff Minimum retention time (in seconds) difference between the parent and a TP to
determine whether a TP elutes prior/after the parent (to calculate retDir values,
see Details in componentsTPs))

specSimParams A named list with parameters that influence the calculation of MS spectra sim-
ilarities. See the spectral similarity parameters documentation for more details.

Details

This function uses transformation product screening to generate components. This function is called
when calling generateComponents with algorithm="tp".

This method typically employs data from generated transformation products to find parents and
their TPs. However, this data is not necessary, and components can also be made based on MS/MS
similarity and/or other annotation similarities between the parent and its TPs. For more details see
the Linking parents and transformation products section below.

Value

The components are stored in objects derived from componentsTPs.

generateComponentsTPs 119

Linking parents and transformation products

Each component consists of feature groups that are considered to be transformation products for
one parent (the parent that ’belongs’ to the component can be retrieved with the componentInfo
method). The parent feature groups are taken from the fGroups parameter, while the feature groups
for TPs are taken from fGroupsTPs. If a feature group occurs in both variables, it may therefore be
considered as both a parent or TP.

If transformation product data is given, i.e. the TPs argument is set, then a suspect screening of
the TPs must be performed in advance (see screenSuspects and convertToSuspects to cre-
ate the suspect list). Furthermore, if TPs were generated with generateTPsBioTransformer
or generateTPsLibrary then the suspect screening must also include the parents (e.g. by set-
ting includeParents=TRUE when calling convertToSuspects or by amending results by setting
amend=TRUE to screenSuspects). The suspect screening is necessary for the componentization
algorithm to map the feature groups of the parent or TP. If the the suspect screening yields multiple
TP hits, all will be reported. Similarly, if the suspect screening contains multiple hits for a parent, a
component is made for each of the parent hits.

In case no transformation product data is provided (TPs=NULL), the componentization algorithm
simply assumes that each feature group from fGroupsTPs is a potential TP for every parent feature
group in fGroups. For this reason, it is highly recommended to specify which feature groups are
parents/TPs (see the fGroupsTPs argument description above) and crucial that the data is post-
processed, for instance by only retaining TPs that have high annotation similarity with their parents
(see the filter method for componentsTPs).

A typical way to distinguish which feature groups are parents or TPs from two different (groups
of) samples is by calculating Fold Changes (see the as.data.table method for feature groups and
plotVolcano). Of course, other statistical techniques from R are also suitable.

During componentization, several characteristics are calculated which may be useful for post-
processing:

• specSimilarity: the MS/MS spectral similarity between the feature groups of the TP and its
parent (‘0-1’).

• specSimilarityPrec,specSimilarityBoth: as specSimilarity, but calculated with binned
data using the "precursor" and "both" method, respectively (see MS spectral similarity pa-
rameters for more details).

• fragmentMatches The number of MS/MS fragment formula annotations that overlap between
the TP and parent. If both the formulas and compounds arguments are specified then the anno-
tation data is pooled prior to calculation. Note that only unique matches are counted. Further-
more, note that annotations from all candidates are considered, even if the formula/structure
of the parent/TP is known. Hence, fragmentMatches is mainly useful when little or no
chemical information is known on the parents/TPs, i.e., when TPs=NULL or originates from
generateTPsLogic. Since annotations for all candidates are used, it is highly recommended
that the annotation objects are first processed with the filter method, for instance, to select
only the top ranked candidates.

• neutralLossMatches As fragmentMatches, but counting overlapping neutral loss formulae.

• retDir The retention time direction of the TP relative to its parent. See Details in compo-
nentsTPs. If TP data was specified, the expected direction is stored in TP_retDir.

• retDiff,mzDiff,formulaDiff The retention time, m/z and formula difference between the
parent and TP (latter only available if data TP formula is available).

120 generateCompounds

Sets workflows

In a sets workflow the component tables are amended with extra information such as overall/specific
set spectrum similarities. As sets data is mixed, transformation products are able to be linked with
a parent, even if they were not measured in the same set.

Note

The shift parameter of specSimParams is ignored by generateComponentsTPs, since it always
calculates similarities with all supported options.

See Also

generateComponents for more details and other algorithms.

generateCompounds Automatic compound annotation

Description

Automatically perform chemical compound annotation for feature groups.

Usage

generateCompounds(fGroups, MSPeakLists, algorithm, ...)

S4 method for signature 'featureGroups'
generateCompounds(fGroups, MSPeakLists, algorithm, ...)

Arguments

fGroups featureGroups object which should be annotated. This should be the same or
a subset of the object that was used to create the specified MSPeakLists. In the
case of a subset only the remaining feature groups in the subset are considered.

MSPeakLists A MSPeakLists object that was generated for the supplied fGroups.

algorithm A character string describing the algorithm that should be used: "metfrag",
"sirius", "library"

... Any parameters to be passed to the selected compound generation algorithm.

Details

Several algorithms are provided to automatically perform compound annotation for feature groups.
To this end, measured masses for all feature groups are searched within online database(s) (e.g.
PubChem) to retrieve a list of potential candidate chemical compounds. Depending on the algorithm
and its parameters, further scoring of candidates is then performed using, for instance, matching
of measured and theoretical isotopic patterns, presence within other data sources such as patent
databases and similarity of measured and in-silico predicted MS/MS fragments. Note that this

https://pubchem.ncbi.nlm.nih.gov/

generateCompounds 121

process is often quite time consuming, especially for large feature group sets. Therefore, this is
often one of the last steps within the workflow and not performed before feature groups have been
prioritized.

generateCompounds is a generic function that will generateCompounds by one of the supported al-
gorithms. The actual functionality is provided by algorithm specific functions such as generateCompoundsMetFrag
and generateCompoundsSIRIUS. While these functions may be called directly, generateCompounds
provides a generic interface and is therefore usually preferred.

Value

A compounds derived object containing all compound annotations.

Scorings

Each algorithm implements their own scoring system. Their names have been simplified and har-
monized where possible. The compoundScorings function can be used to get an overview of both
the algorithm specific and generic scoring names.

Sets workflows

With a sets workflow, annotation is first performed for each set. This is important, since the an-
notation algorithms typically cannot work with data from mixed ionization modes. The annotation
results are then combined to generate a sets consensus:

• The annotation tables for each feature group from the set specific data are combined. Rows
with overlapping candidates (determined by the first-block INCHIKEY) are merged.

• Set specific data (e.g. the ionic formula) is retained by renaming their columns with set specific
names.

• The MS/MS fragment annotations (fragInfo column) from each set are combined.

• The scorings for each set are averaged to calculate overall scores. if setAvgSpecificScores=FALSE
then scorings that are considered set specific (e.g. MS/MS and isotopic pattern match) are not
averaged.

• The candidates are re-ranked based on their average ranking among the set data (if a candidate
is absent in a set it is assigned the poorest rank in that set).

• The coverage of each candidate among sets is calculated. Depending on the setThreshold
and setThresholdAnn arguments, candidates with low abundance are removed.

See Also

The compounds output class and its methods and the algorithm specific functions: generateCompoundsMetFrag,
generateCompoundsSIRIUS, generateCompoundsLibrary

122 generateCompoundsLibrary

generateCompoundsLibrary

Compound annotation with an MS library

Description

Uses a MS library loaded by loadMSLibrary for compound annotation.

Usage

generateCompoundsLibrary(fGroups, ...)

S4 method for signature 'featureGroups'
generateCompoundsLibrary(

fGroups,
MSPeakLists,
MSLibrary,
minSim = 0.75,
minAnnSim = minSim,
absMzDev = 0.002,
adduct = NULL,
checkIons = "adduct",
spectrumType = "MS2",
specSimParams = getDefSpecSimParams(),
specSimParamsLib = getDefSpecSimParams()

)

S4 method for signature 'featureGroupsSet'
generateCompoundsLibrary(
fGroups,
MSPeakLists,
MSLibrary,
minSim = 0.75,
minAnnSim = minSim,
absMzDev = 0.002,
adduct = NULL,
...,
setThreshold = 0,
setThresholdAnn = 0,
setAvgSpecificScores = FALSE

)

Arguments

fGroups featureGroups object which should be annotated. This should be the same or
a subset of the object that was used to create the specified MSPeakLists. In the
case of a subset only the remaining feature groups in the subset are considered.

generateCompoundsLibrary 123

... (sets workflow) Further arguments passed to the non-sets workflow method.

MSPeakLists A MSPeakLists object that was generated for the supplied fGroups.

MSLibrary The MSLibrary object that should be used to find candidates.

minSim The minimum spectral similarity for candidate records.

minAnnSim The minimum spectral similarity of a record for it to be used to find annotations
(see the Details section).

absMzDev The maximum absolute m/z deviation between the feature group and library
record m/z values for candidate selection.

adduct An adduct object (or something that can be converted to it with as.adduct).
Examples: "[M-H]-", "[M+Na]+". If the featureGroups object has adduct
annotations then these are used if adducts=NULL.
(sets workflow) The adduct argument is not supported for sets workflows, since
the adduct annotations will then always be used.

checkIons A character that excludes library records with different adduct (checkIons="adduct")
or MS ionization polarity (checkIons="polarity"). If checkIons="none"
then these filters are not applied.

spectrumType A character vector which limits library records to the given spectrum types
(Spectrum_type field, e.g. "MS2"). Set to NULL to allow all spectrum types.

specSimParams A named list with parameters that influence the calculation of MS spectra sim-
ilarities. See the spectral similarity parameters documentation for more details.

specSimParamsLib

Like specSimParams, but these parameters only influence pre-treatment of li-
brary spectra (only the removePrecursor, relMinIntensity and minPeaks
parameters are used).

setThreshold (sets workflow) Minimum abundance for a candidate among all sets (‘0-1’).
For instance, a value of ‘1’ means that the candidate needs to be present in all
the set data.

setThresholdAnn

(sets workflow) As setThreshold, but only taking into account the set data that
contain annotations for the feature group of the candidate.

setAvgSpecificScores

(sets workflow) If TRUE then set specific scorings (e.g. MS/MS match) are also
averaged.

Details

This function uses MS library spectra to generate compound candidates. This function is called
when calling generateCompounds with algorithm="library".

This method matches measured MS/MS data (peak lists) with those from an MS library to find
candidate structures. Hence, only feature groups with MS/MS peak list data are annotated.

The library is searched for candidates with the following criteria:

1. Only records with ion m/z (PrecursorMZ), SMILES, INCHI, INCHIKEY and formula data are
considered.

124 generateCompoundsMetFrag

2. Depending on the value of the checkIons argument, records with different adduct (Precursor_type)
or polarity (Ion_mode) may be ignored.

3. The m/z values of the candidate and feature group should match (tolerance set by absMzDev
argument).

4. The spectral similarity should not be lower than the value defined for the minSim argument.

5. If multiple candidates with the same first-block INCHIKEY are found then only the candidate
with the best spectral match is kept.

If the library contains annotations these will be added to the matched MS/MS peaks. However, since
the candidate selected from criterion #5 above may not contain all the annotation data available from
the MS library, annotations from other records are also considered (controlled by the minAnnSim
argument). If this leads to different annotations for the same mass peak then only the most abundant
annotation is kept.

See Also

generateCompounds for more details and other algorithms.

loadMSLibrary to obtain MS library data and the methods for MSLibrary to treat the data before
using it for annotation.

generateCompoundsMetFrag

Compound annotation with MetFrag

Description

Uses the metfRag package or MetFrag CL for compound identification (see http://ipb-halle.
github.io/MetFrag/).

Usage

generateCompoundsMetFrag(fGroups, ...)

S4 method for signature 'featureGroups'
generateCompoundsMetFrag(

fGroups,
MSPeakLists,
method = "CL",
timeout = 300,
timeoutRetries = 2,
errorRetries = 2,
topMost = 100,
dbRelMzDev = 5,
fragRelMzDev = 5,
fragAbsMzDev = 0.002,
adduct = NULL,

http://ipb-halle.github.io/MetFrag/
http://ipb-halle.github.io/MetFrag/

generateCompoundsMetFrag 125

database = "pubchem",
extendedPubChem = "auto",
chemSpiderToken = "",
scoreTypes = compoundScorings("metfrag", database, onlyDefault = TRUE)$name,
scoreWeights = 1,
preProcessingFilters = c("UnconnectedCompoundFilter", "IsotopeFilter"),
postProcessingFilters = c("InChIKeyFilter"),
maxCandidatesToStop = 2500,
identifiers = NULL,
extraOpts = NULL

)

S4 method for signature 'featureGroupsSet'
generateCompoundsMetFrag(
fGroups,
MSPeakLists,
method = "CL",
timeout = 300,
timeoutRetries = 2,
errorRetries = 2,
topMost = 100,
dbRelMzDev = 5,
fragRelMzDev = 5,
fragAbsMzDev = 0.002,
adduct = NULL,
...,
setThreshold = 0,
setThresholdAnn = 0,
setAvgSpecificScores = FALSE

)

Arguments

fGroups featureGroups object which should be annotated. This should be the same or
a subset of the object that was used to create the specified MSPeakLists. In the
case of a subset only the remaining feature groups in the subset are considered.

... (sets workflow) Further arguments passed to the non-sets workflow method.

MSPeakLists A MSPeakLists object that was generated for the supplied fGroups.

method Which method should be used for MetFrag execution: "CL" for MetFragCL and
"R" for MetFragR. The former is usually much faster and recommended.

timeout Maximum time (in seconds) before a metFrag query for a feature group is
stopped. Also see timeoutRetries argument.

timeoutRetries Maximum number of retries after reaching a timeout before completely skipping
the metFrag query for a feature group. Also see timeout argument.

errorRetries Maximum number of retries after an error occurred. This may be useful to
handle e.g. connection errors.

126 generateCompoundsMetFrag

topMost Only keep this number of candidates (per feature group) with highest score. Set
to NULL to always keep all candidates, however, please note that this may result
in significant usage of CPU/RAM resources for large numbers of candidates.

dbRelMzDev Relative mass deviation (in ppm) for database search. Sets the ‘DatabaseSearchRelativeMassDeviation’
option.

fragRelMzDev Relative mass deviation (in ppm) for fragment matching. Sets the ‘FragmentPeakMatchRelativeMassDeviation’
option.

fragAbsMzDev Absolute mass deviation (in Da) for fragment matching. Sets the ‘FragmentPeakMatchAbsoluteMassDeviation’
option.

adduct An adduct object (or something that can be converted to it with as.adduct).
Examples: "[M-H]-", "[M+Na]+". If the featureGroups object has adduct
annotations then these are used if adducts=NULL.
(sets workflow) The adduct argument is not supported for sets workflows, since
the adduct annotations will then always be used.

database Compound database to use. Valid values are: "pubchem", "chemspider", "for-ident",
"comptox", "pubchemlite", "kegg", "sdf", "psv" and "csv". See section be-
low for more information. Sets the MetFragDatabaseType option.

extendedPubChem

If database="pubchem": whether to use the extended database that includes in-
formation for compound scoring (i.e. number of patents/PubMed references).
Note that downloading candidates from this database might take extra time.
Valid values are: FALSE (never use it), TRUE (always use it) or "auto" (default,
use if specified scorings demand it).

chemSpiderToken

A character string with the ChemSpider security token that should be set when
the ChemSpider database is used. Sets the ‘ChemSpiderToken’ option.

scoreTypes A character vector defining the scoring types. See the Scorings section below
for more information. Note that both generic and MetFrag specific names are ac-
cepted (i.e. name and metfrag columns returned by compoundScorings). When
a local database is used, the name should match what is given there (e.g column
names when database=csv). Note that MetFrag may still report other scoring
data, however, these are not used for ranking. Sets the ‘MetFragScoreTypes’
option.

scoreWeights Numeric vector containing weights of the used scoring types. Order is the same
as set in scoreTypes. Values are recycled if necessary. Sets the ‘MetFragScoreWeights’
option.

preProcessingFilters, postProcessingFilters
A character vector defining pre/post filters applied before/after fragmentation
and scoring (e.g. "UnconnectedCompoundFilter", "IsotopeFilter", "ElementExclusionFilter").
Some methods require further options to be set. For all filters and more informa-
tion refer to the Candidate Filters section on the MetFragR homepage. Sets
the ‘MetFragPreProcessingCandidateFilter’ and MetFragPostProcessingCandidateFilter
options.

maxCandidatesToStop

If more than this number of candidate structures are found then processing will
be aborted and no results this feature group will be reported. Low values in-
crease the chance of missing data, whereas too high values will use too much

http://www.chemspider.com/AboutServices.aspx
http://ipb-halle.github.io/MetFrag/projects/metfragr/

generateCompoundsMetFrag 127

computer resources and signficantly slowdown the process. Sets the ‘MaxCandidateLimitToStop’
option.

identifiers A list containing for each feature group a character vector with database iden-
tifiers that should be used to find candidates for a feature group (the list should
be named by feature group names). If NULL all relevant candidates will be
retrieved from the specified database. An example usage scenario is to ob-
tain the list of candidate identifiers from a compounds object obtained with
generateCompoundsSIRIUS using the identifiers method. This way, only
those candidates will be searched by MetFrag that were generated by SIR-
IUS+CSI:FingerID. Sets the ‘PrecursorCompoundIDs’ option.

extraOpts A named list containing further settings MetFrag. See the MetFragR and Met-
Frag CL homepages for all available options. Set to NULL to ignore.

setThreshold (sets workflow) Minimum abundance for a candidate among all sets (‘0-1’).
For instance, a value of ‘1’ means that the candidate needs to be present in all
the set data.

setThresholdAnn

(sets workflow) As setThreshold, but only taking into account the set data that
contain annotations for the feature group of the candidate.

setAvgSpecificScores

(sets workflow) If TRUE then set specific scorings (e.g. MS/MS match) are also
averaged.

Details

This function uses MetFrag to generate compound candidates. This function is called when calling
generateCompounds with algorithm="metfrag".

Several online compound databases such as PubChem and ChemSpider may be chosen for retrieval
of candidate structures. This method requires the availability of MS/MS data, and feature groups
without it will be ignored. Many options exist to score and filter resulting data, and it is highly sug-
gested to optimize these to improve results. The MetFrag options PeakList, IonizedPrecursorMass
and ExperimentalRetentionTimeValue (in minutes) fields are automatically set from feature
data.

Value

generateCompoundsMetFrag returns a compoundsMF object.

Scorings

MetFrag supports many different scorings to rank candidates. The compoundScorings function can
be used to get an overview: (some columns are omitted)

name metfrag database
score Score
fragScore FragmenterScore
metFusionScore OfflineMetFusionScore
individualMoNAScore OfflineIndividualMoNAScore

http://ipb-halle.github.io/MetFrag/projects/metfragr/
http://ipb-halle.github.io/MetFrag/projects/metfragcl/
http://ipb-halle.github.io/MetFrag/projects/metfragcl/
https://pubchem.ncbi.nlm.nih.gov/
http://www.chemspider.com/

128 generateCompoundsMetFrag

numberPatents PubChemNumberPatents pubchem
numberPatents Patent_Count pubchemlite
pubMedReferences PubChemNumberPubMedReferences pubchem
pubMedReferences ChemSpiderNumberPubMedReferences chemspider
pubMedReferences NUMBER_OF_PUBMED_ARTICLES comptox
pubMedReferences PubMed_Count pubchemlite
extReferenceCount ChemSpiderNumberExternalReferences chemspider
dataSourceCount ChemSpiderDataSourceCount chemspider
referenceCount ChemSpiderReferenceCount chemspider
RSCCount ChemSpiderRSCCount chemspider
smartsInclusionScore SmartsSubstructureInclusionScore
smartsExclusionScore SmartsSubstructureExclusionScore
suspectListScore SuspectListScore
retentionTimeScore RetentionTimeScore
CPDATCount CPDAT_COUNT comptox
TOXCASTActive TOXCAST_PERCENT_ACTIVE comptox
dataSources DATA_SOURCES comptox
pubChemDataSources PUBCHEM_DATA_SOURCES comptox
EXPOCASTPredExpo EXPOCAST_MEDIAN_EXPOSURE_PREDICTION_MG/KG-BW/DAY comptox
ECOTOX ECOTOX comptox
NORMANSUSDAT NORMANSUSDAT comptox
MASSBANKEU MASSBANKEU comptox
TOX21SL TOX21SL comptox
TOXCAST TOXCAST comptox
KEMIMARKET KEMIMARKET comptox
MZCLOUD MZCLOUD comptox
pubMedNeuro PubMedNeuro comptox
CIGARETTES CIGARETTES comptox
INDOORCT16 INDOORCT16 comptox
SRM2585DUST SRM2585DUST comptox
SLTCHEMDB SLTCHEMDB comptox
THSMOKE THSMOKE comptox
ITNANTIBIOTIC ITNANTIBIOTIC comptox
STOFFIDENT STOFFIDENT comptox
KEMIMARKET_EXPO KEMIMARKET_EXPO comptox
KEMIMARKET_HAZ KEMIMARKET_HAZ comptox
REACH2017 REACH2017 comptox
KEMIWW_WDUIndex KEMIWW_WDUIndex comptox
KEMIWW_StpSE KEMIWW_StpSE comptox
KEMIWW_SEHitsOverDL KEMIWW_SEHitsOverDL comptox
ZINC15PHARMA ZINC15PHARMA comptox
PFASMASTER PFASMASTER comptox
peakFingerprintScore AutomatedPeakFingerprintAnnotationScore
lossFingerprintScore AutomatedLossFingerprintAnnotationScore
agroChemInfo AgroChemInfo pubchemlite
bioPathway BioPathway pubchemlite
drugMedicInfo DrugMedicInfo pubchemlite
foodRelated FoodRelated pubchemlite

generateCompoundsMetFrag 129

pharmacoInfo PharmacoInfo pubchemlite
safetyInfo SafetyInfo pubchemlite
toxicityInfo ToxicityInfo pubchemlite
knownUse KnownUse pubchemlite
disorderDisease DisorderDisease pubchemlite
identification Identification pubchemlite
annoTypeCount FPSum pubchemlite
annoTypeCount AnnoTypeCount pubchemlite
annotHitCount AnnotHitCount pubchemlite

In addition, the compoundScorings function is also useful to programmatically generate a set of
scorings to be used for ranking with MetFrag. For instance, the following can be given to the
scoreTypes argument to use all default scorings for PubChem: compoundScorings("metfrag",
"pubchem", onlyDefault=TRUE)$name.

For all MetFrag scoring types refer to the Candidate Scores section on the MetFragR homepage.

Usage of MetFrag databases

When database="chemspider" setting the chemSpiderToken argument is mandatory.

If a local database is chosen via sdf, psv, or csv then its file location should be set with the
LocalDatabasePath value via the extraOpts argument. For example: extraOpts = list(LocalDatabasePath
= "C:/myDB.csv").

If database="pubchemlite" or database="comptox" and patRoonExt is not installed then the
file location must be specified as above or by setting the patRoon.path.MetFragPubChemLite/patRoon.path.MetFragCompTox
option. See the installation section in the handbook for more details.

Parallelization

generateCompoundsMetFrag uses multiprocessing to parallelize computations. Please see the par-
allelization section in the handbook for more details and patRoon options for configuration options.

When local database files are used with generateCompoundsMetFrag (e.g. when database is set
to "pubchemlite", "csv" etc.) and ‘patRoon.MP.method="future"’, then the database file must
be present on all the nodes. When pubchemlite or comptox is used, the location for these databases
can be configured on the host with the respective package options (‘patRoon.path.MetFragPubChemLite’
and ‘patRoon.path.MetFragCompTox’) or made available by installing the patRoonExt package.
Note that these files must also be present on the local host computer, even if it is not participating
in computations.

References

Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016). “MetFrag relaunched: incor-
porating strategies beyond in silico fragmentation.” Journal of Cheminformatics, 8(1). doi:10.1186/
s1332101601159.

See Also

generateCompounds for more details and other algorithms.

http://ipb-halle.github.io/MetFrag/projects/metfragr/
https://doi.org/10.1186/s13321-016-0115-9
https://doi.org/10.1186/s13321-016-0115-9

130 generateCompoundsSIRIUS

generateCompoundsSIRIUS

Compound annotation with SIRIUS

Description

Uses SIRIUS in combination with CSI:FingerID for compound annotation.

Usage

generateCompoundsSIRIUS(fGroups, ...)

S4 method for signature 'featureGroups'
generateCompoundsSIRIUS(

fGroups,
MSPeakLists,
relMzDev = 5,
adduct = NULL,
projectPath = NULL,
elements = "CHNOP",
profile = "qtof",
formulaDatabase = NULL,
fingerIDDatabase = "pubchem",
noise = NULL,
cores = NULL,
topMost = 100,
topMostFormulas = 5,
login = "check",
alwaysLogin = FALSE,
extraOptsGeneral = NULL,
extraOptsFormula = NULL,
verbose = TRUE,
splitBatches = FALSE,
dryRun = FALSE

)

S4 method for signature 'featureGroupsSet'
generateCompoundsSIRIUS(
fGroups,
MSPeakLists,
relMzDev = 5,
adduct = NULL,
projectPath = NULL,
...,
setThreshold = 0,
setThresholdAnn = 0,
setAvgSpecificScores = FALSE

https://bio.informatik.uni-jena.de/software/sirius/
https://www.csi-fingerid.uni-jena.de/

generateCompoundsSIRIUS 131

)

Arguments

fGroups featureGroups object which should be annotated. This should be the same or
a subset of the object that was used to create the specified MSPeakLists. In the
case of a subset only the remaining feature groups in the subset are considered.

... (sets workflow) Further arguments passed to the non-sets workflow method.

MSPeakLists A MSPeakLists object that was generated for the supplied fGroups.

relMzDev Maximum relative deviation between the measured and candidate formula m/z
values (in ppm). Sets the ‘--ppm-max’ command line option.

adduct An adduct object (or something that can be converted to it with as.adduct).
Examples: "[M-H]-", "[M+Na]+". If the featureGroups object has adduct
annotations then these are used if adducts=NULL.
(sets workflow) The adduct argument is not supported for sets workflows, since
the adduct annotations will then always be used.

projectPath, dryRun
These are mainly for internal purposes. projectPath sets the output directory
for the SIRIUS output (a temporary directory if NULL). If dryRun is TRUE then no
computations are done and only the results from projectPath are processed.
(sets workflow) projectPath should be a character specifying the paths for
each set.

elements Elements to be considered for formulae calculation. This will heavily affects
the number of candidates! Always try to work with a minimal set by excluding
elements you don’t expect. The minimum/maximum number of elements can
also be specified, for example: a value of "C[5]H[10-15]O" will only consider
formulae with up to five carbon atoms, between ten and fifteen hydrogen atoms
and any amount of oxygen atoms. Sets the ‘--elements’ command line option.

profile Name of the configuration profile, for example: ‘"qtof"’, ‘"orbitrap"’, ‘"fticr"’.
Sets the ‘--profile’ commandline option.

formulaDatabase

If not NULL, use a database for retrieval of formula candidates. Possible values
are: ‘"pubchem"’, ‘"bio"’, ‘"kegg"’, ‘"hmdb"’. Sets the ‘--database’ com-
mandline option.

fingerIDDatabase

Database specifically used for CSI:FingerID. If NULL, the value of the formulaDatabase
parameter will be used or "pubchem" when that is also NULL. Sets the ‘--fingerid-db’
option.

noise Median intensity of the noise (NULL ignores this parameter). Sets the ‘--noise’
commandline option.

cores The number of cores SIRIUS will use. If NULL then the default of all cores will
be used.

topMost Only keep this number of candidates (per feature group) with highest score. Set
to NULL to always keep all candidates, however, please note that this may result
in significant usage of CPU/RAM resources for large numbers of candidates.

132 generateCompoundsSIRIUS

topMostFormulas

Do not return more than this number of candidate formulae. Note that only
compounds for these formulae will be searched. Sets the ‘--candidates’ com-
mandline option.

login, alwaysLogin
Specifies if and how account logging of SIRIUS should be handled:
login=FALSE: no automatic login is performed and the active login status is not
checked.
login="check": aborts if no active login is present.
login="interactive": interactively ask for login (using getPass).
login=c(username="...", password="..."): perform the login with the given
details. For security reasons, please do not enter the details directly, but use e.g.
environment variables or store/retrieve them with the keyring package.
if alwaysLogin=TRUE then a login is always performed, otherwise only if SIR-
IUS reports no active login.
See the SIRIUS website and patRoon handbook for more information.

extraOptsGeneral, extraOptsFormula
a character vector with any extra commandline parameters for SIRIUS. For
SIRIUS versions <4.4 there is no distinction between general and formula op-
tions. Otherwise commandline options specified in extraOptsGeneral are added
prior to the formula command, while options specified in extraOptsFormula
are added in afterwards. See the SIRIUS manual for more details. Set to NULL to
ignore.

verbose If TRUE then more output is shown in the terminal.

splitBatches If TRUE then the calculations done by SIRIUS will be evenly split over multi-
ple SIRIUS calls (which may be run in parallel depending on the set package
options). If splitBatches=FALSE then all feature calculations are performed
from a single SIRIUS execution, which is often the fastest if calculations are
performed on a single computer.

setThreshold (sets workflow) Minimum abundance for a candidate among all sets (‘0-1’).
For instance, a value of ‘1’ means that the candidate needs to be present in all
the set data.

setThresholdAnn

(sets workflow) As setThreshold, but only taking into account the set data that
contain annotations for the feature group of the candidate.

setAvgSpecificScores

(sets workflow) If TRUE then set specific scorings (e.g. MS/MS match) are also
averaged.

Details

This function uses SIRIUS to generate compound candidates. This function is called when calling
generateCompounds with algorithm="sirius".

Similar to generateFormulasSIRIUS, candidate formulae are generated with SIRIUS. These re-
sults are then fed to CSI:FingerID to acquire candidate structures. Candidate formulae without any
assigned structure will be removed (unlike generateFormulasSIRIUS). This method requires the
availability of MS/MS data, and feature groups without it will be ignored.

https://CRAN.R-project.org/package=getPass
https://CRAN.R-project.org/package=keyring
https://boecker-lab.github.io/docs.sirius.github.io/account-and-license/

generateFormulas 133

Value

A compoundsSIRIUS object.

Parallelization

generateCompoundsSIRIUS uses multiprocessing to parallelize computations. Please see the par-
allelization section in the handbook for more details and patRoon options for configuration options.

Note

For annotations performed with SIRIUS it is often the fastest to keep the default splitBatches=FALSE.
In this case, all SIRIUS output will be printed to the terminal (unless verbose=FALSE or ‘patRoon.MP.method="future"’).
Furthermore, please note that only annotations to be performed for the same adduct are grouped in
a single batch execution.

References

Duhrkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu
J, Bocker S (2019). “SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite struc-
ture information.” Nature Methods, 16(4), 299–302. doi:10.1038/s4159201903448.

Duhrkop K, Bocker S (2015). “Fragmentation Trees Reloaded.” In Przytycka TM (ed.), Research
in Computational Molecular Biology, 65–79. ISBN 978-3-319-16706-0.

Duhrkop K, Shen H, Meusel M, Rousu J, Bocker S (2015). “Searching molecular structure databases
with tandem mass spectra using CSI:FingerID.” Proceedings of the National Academy of Sciences,
112(41), 12580–12585. doi:10.1073/pnas.1509788112.

Bocker S, Letzel MC, Liptak Z, Pervukhin A (2008). “SIRIUS: decomposing isotope patterns
for metabolite identification.” Bioinformatics, 25(2), 218–224. doi:10.1093/bioinformatics/btn603.

See Also

generateCompounds for more details and other algorithms.

generateFormulas Automatic chemical formula generation

Description

Automatically calculate chemical formulae for all feature groups.

Usage

generateFormulas(fGroups, MSPeakLists, algorithm, ...)

S4 method for signature 'featureGroups'
generateFormulas(fGroups, MSPeakLists, algorithm, ...)

https://doi.org/10.1038/s41592-019-0344-8
https://doi.org/10.1073/pnas.1509788112
https://doi.org/10.1093/bioinformatics/btn603

134 generateFormulas

Arguments

fGroups featureGroups object for which formulae should be generated. This should
be the same or a subset of the object that was used to create the specified
MSPeakLists. In the case of a subset only the remaining feature groups in the
subset are considered.

MSPeakLists An MSPeakLists object that was generated for the supplied fGroups.

algorithm A character string describing the algorithm that should be used: "bruker",
"genform", "sirius"

... Any parameters to be passed to the selected formula generation algorithm.

Details

Several algorithms are provided to automatically generate formulae for given feature groups. All
algorithms use the accurate mass of a feature to back-calculate candidate formulae. Depending on
the algorithm and data availability, other data such as isotopic pattern and MS/MS fragments may
be used to further improve formula assignment and ranking.

generateFormulas is a generic function that will generateFormulas by one of the supported algo-
rithms. The actual functionality is provided by algorithm specific functions such as generateFormulasDA
and generateFormulasGenForm. While these functions may be called directly, generateFormulas
provides a generic interface and is therefore usually preferred.

Value

A formulas object containing all generated formulae.

Candidate assignment

Formula candidate assignment occurs in one of the following ways:

• Candidates are first generated for each feature and then pooled to form consensus candidates
for the feature group.

• Candidates are directly generated for each feature group by group averaged MS peak list data.

With approach (1), scorings and mass errors are averaged and outliers are removed (controlled
by featThreshold and featThresholdAnn arguments). Other candidate properties that cannot
be averaged are from the feature from the analysis as specified in the "analysis" column of the
results. The second approach only generates candidate formulae once for every feature group, and
is therefore generally much faster. However, this inherently prevents removal of outliers.

Note that with either approach subsequent workflow steps that use formula data (e.g. addFormulaScoring
and reporting functions) only use formula data that was eventually assigned to feature groups.

Scorings

Each algorithm implements their own scoring system. Their names have been harmonized where
possible. An overview is obtained with the formulaScorings function:

name genform sirius bruker description

generateFormulasDA 135

combMatch comb_match - - MS and MS/MS combined match value
isoScore MS_match isoScore - How well the isotopic pattern matches
mSigma - - mSigma Deviation of the isotopic pattern
MSMSScore MSMS_match treeScore - How well MS/MS data matches
score - score Score Overall MS formula score

Sets workflows

With a sets workflow, annotation is first performed for each set. This is important, since the an-
notation algorithms typically cannot work with data from mixed ionization modes. The annotation
results are then combined to generate a sets consensus:

• The annotation tables for each feature group from the set specific data are combined. Rows
with overlapping candidates (determined by the neutral formula) are merged.

• Set specific data (e.g. the ionic formula) is retained by renaming their columns with set specific
names.

• The MS/MS fragment annotations (fragInfo column) from each set are combined.

• The scorings for each set are averaged to calculate overall scores. if setAvgSpecificScores=FALSE
then scorings that are considered set specific (e.g. MS/MS and isotopic pattern match) are not
averaged.

• The candidates are re-ranked based on their average ranking among the set data (if a candidate
is absent in a set it is assigned the poorest rank in that set).

• The coverage of each candidate among sets is calculated. Depending on the setThreshold
and setThresholdAnn arguments, candidates with low abundance are removed.

See Also

The formulas output class and its methods and the algorithm specific functions: generateFormulasDA,
generateFormulasGenForm, generateFormulasSIRIUS

The GenForm manual (also known as MOLGEN-MSMS).

generateFormulasDA Generate formula with Bruker DataAnalysis

Description

Uses Bruker DataAnalysis to generate chemical formulae.

Usage

generateFormulasDA(fGroups, ...)

S4 method for signature 'featureGroups'
generateFormulasDA(

fGroups,
MSPeakLists,

https://www.researchgate.net/publication/307964728_MOLGEN-MSMS_Software_User_Manual

136 generateFormulasDA

precursorMzSearchWindow = 0.002,
MSMode = "both",
adduct = NULL,
featThreshold = 0,
featThresholdAnn = 0.75,
absAlignMzDev = 0.002,
save = TRUE,
close = save

)

S4 method for signature 'featureGroupsSet'
generateFormulasDA(
fGroups,
MSPeakLists,
precursorMzSearchWindow = 0.002,
MSMode = "both",
adduct = NULL,
...,
setThreshold = 0,
setThresholdAnn = 0,
setAvgSpecificScores = FALSE

)

Arguments

fGroups featureGroups object for which formulae should be generated. This should
be the same or a subset of the object that was used to create the specified
MSPeakLists. In the case of a subset only the remaining feature groups in the
subset are considered.

... (sets workflow) Further arguments passed to the non-sets workflow method.

MSPeakLists An MSPeakLists object that was generated for the supplied fGroups.
precursorMzSearchWindow

Search window for m/z values (+/- the feature m/z) used to find back feature data
of precursor/parent ions from MS/MS spectra (this data is not readily available
from SmartFormula3D results).

MSMode Whether formulae should be generated only from MS data ("ms"), MS/MS data
("msms") or both ("both"). Selecting "both" will calculate formulae from MS
data and MS/MS data and combines the results (duplicated formulae are re-
moved). This is useful when poor MS/MS data would exclude proper candi-
dates.

adduct An adduct object (or something that can be converted to it with as.adduct).
Examples: "[M-H]-", "[M+Na]+". If the featureGroups object has adduct
annotations then these are used if adducts=NULL.
(sets workflow) The adduct argument is not supported for sets workflows, since
the adduct annotations will then always be used.

featThreshold If calculateFeatures=TRUE: minimum presence (‘0-1’) of a formula in all
features before it is considered as a candidate for a feature group. For instance,

generateFormulasDA 137

featThreshold=0.75 dictates that a formula should be present in at least 75%
of the features inside a feature group.

featThresholdAnn

As featThreshold, but only considers features with annotations. For instance,
featThresholdAnn=0.75 dictates that a formula should be present in at least
75% of the features with annotations inside a feature group.

absAlignMzDev When the group formula annotation consensus is made from feature annotations,
the m/z values of annotated MS/MS fragments may slightly deviate from those
of the corresponding group MS/MS peak list. The absAlignMzDev argument
specifies the maximum m/z window used to re-align the mass peaks.

close, save If TRUE then Bruker files are closed and saved after processing with DataAnal-
ysis, respectively. Setting close=TRUE prevents that many analyses might be
opened simultaneously in DataAnalysis, which otherwise may use excessive
memory or become slow. By default save is TRUE when close is TRUE, which
is likely what you want as otherwise any processed data is lost.

setThreshold (sets workflow) Minimum abundance for a candidate among all sets (‘0-1’).
For instance, a value of ‘1’ means that the candidate needs to be present in all
the set data.

setThresholdAnn

(sets workflow) As setThreshold, but only taking into account the set data that
contain annotations for the feature group of the candidate.

setAvgSpecificScores

(sets workflow) If TRUE then set specific scorings (e.g. MS/MS match) are also
averaged.

Details

This function uses bruker to generate formula candidates. This function is called when calling
generateFormulas with algorithm="bruker".

This method supports scoring based on overlap between measured and theoretical isotopic patterns
(both MS and MS/MS data) and the presence of ’fitting’ MS/MS fragments. The method will it-
erate through all features (or "Compounds" in DataAnalysis terms) and call SmartFormula (and
SmartFormula3D if MS/MS data is available) to generate all formulae. Parameters affecting for-
mula calculation have to be set in advance within the DataAnalysis method for each analysis (e.g.
by setDAMethod).

This method requires that features were obtained with findFeaturesBruker. It is recommended,
but not mandatory, that the MSPeakLists are also generated by DataAnalysis.

Calculation of formulae with DataAnalysis always occurs with the ’feature approach’ (see Candidate
assignment in generateFormulas).

Value

A formulas object containing all generated formulae.

138 generateFormulasGenForm

Note

If any errors related to DCOM appear it might be necessary to terminate DataAnalysis (note that
DataAnalysis might still be running as a background process). The ProcessCleaner application
installed with DataAnalayis can be used for this.

See Also

generateFormulas for more details and other algorithms.

generateFormulasGenForm

Generate formula with GenForm

Description

Uses GenForm to generate chemical formula candidates.

Usage

generateFormulasGenForm(fGroups, ...)

S4 method for signature 'featureGroups'
generateFormulasGenForm(

fGroups,
MSPeakLists,
relMzDev = 5,
adduct = NULL,
elements = "CHNOP",
hetero = TRUE,
oc = FALSE,
thrMS = NULL,
thrMSMS = NULL,
thrComb = NULL,
maxCandidates = Inf,
extraOpts = NULL,
calculateFeatures = TRUE,
featThreshold = 0,
featThresholdAnn = 0.75,
absAlignMzDev = 0.002,
MSMode = "both",
isolatePrec = TRUE,
timeout = 120,
topMost = 50,
batchSize = 8

)

S4 method for signature 'featureGroupsSet'

https://sourceforge.net/projects/genform/

generateFormulasGenForm 139

generateFormulasGenForm(
fGroups,
MSPeakLists,
relMzDev = 5,
adduct = NULL,
...,
setThreshold = 0,
setThresholdAnn = 0,
setAvgSpecificScores = FALSE

)

Arguments

fGroups featureGroups object for which formulae should be generated. This should
be the same or a subset of the object that was used to create the specified
MSPeakLists. In the case of a subset only the remaining feature groups in the
subset are considered.

... (sets workflow) Further arguments passed to the non-sets workflow method.

MSPeakLists An MSPeakLists object that was generated for the supplied fGroups.

relMzDev Maximum relative deviation between the measured and candidate formula m/z
values (in ppm). Sets the ‘ppm’ command line option.

adduct An adduct object (or something that can be converted to it with as.adduct).
Examples: "[M-H]-", "[M+Na]+". If the featureGroups object has adduct
annotations then these are used if adducts=NULL.
(sets workflow) The adduct argument is not supported for sets workflows, since
the adduct annotations will then always be used.

elements Elements to be considered for formulae calculation. This will heavily affects
the number of candidates! Always try to work with a minimal set by excluding
elements you don’t expect. Sets the ‘el’ command line option.

hetero Only consider formulae with at least one hetero atom. Sets the ‘het’ command-
line option.

oc Only consider organic formulae (i.e. with at least one carbon atom). Sets the
‘oc’ commandline option.

thrMS, thrMSMS, thrComb
Sets the thresholds for the GenForm MS score (isoScore), MS/MS score (MSMSScore)
and combined score (combMatch). Sets the ‘thms’/‘thmsms’/‘thcomb’ command
line options, respectively. Set to NULL for no threshold.

maxCandidates If this number of candidates are found then GenForm aborts any further for-
mula calculations. The number of candidates is determined after any formula
filters, hence, the properties and ’quality’ of the candidates is influenced by op-
tions such as oc and thrMS arguments. Note that this is different than topMost,
which selects the candidates after GenForm finished. Sets the ‘max’ command
line option. Set to ‘0’ or Inf for no maximum.

extraOpts An optional character vector with any other command line options that will be
passed to GenForm. See the GenForm options section for all available command
line options.

140 generateFormulasGenForm

calculateFeatures

If TRUE fomulae are first calculated for all features prior to feature group assign-
ment (see Candidate assignment in generateFormulas).

featThreshold If calculateFeatures=TRUE: minimum presence (‘0-1’) of a formula in all
features before it is considered as a candidate for a feature group. For instance,
featThreshold=0.75 dictates that a formula should be present in at least 75%
of the features inside a feature group.

featThresholdAnn

As featThreshold, but only considers features with annotations. For instance,
featThresholdAnn=0.75 dictates that a formula should be present in at least
75% of the features with annotations inside a feature group. @param topMost
Only keep this number of candidates (per feature group) with highest score.

absAlignMzDev When the group formula annotation consensus is made from feature annotations,
the m/z values of annotated MS/MS fragments may slightly deviate from those
of the corresponding group MS/MS peak list. The absAlignMzDev argument
specifies the maximum m/z window used to re-align the mass peaks.

MSMode Whether formulae should be generated only from MS data ("ms"), MS/MS data
("msms") or both ("both"). Selecting "both" will fall back to formula calcula-
tion with only MS data in case no MS/MS data is available.

isolatePrec Settings used for isolation of precursor mass peaks and their isotopes. This
isolation is highly important for accurate isotope scoring of candidates, as non-
relevant mass peaks will dramatically decrease the score. The value of isolatePrec
should either be a list with parameters (see the filter method for MSPeakLists
for more details), TRUE for default parameters or FALSE for no isolation (e.g.
when you already performed isolation with the filter method). The z pa-
rameter (charge) is automatically deduced from the adduct used for annotation
(unless isolatePrec=FALSE), hence any custom z setting is ignored.

timeout Maximum time (in seconds) that a GenForm command is allowed to execute. If
this time is exceeded a warning is emitted and the command is terminated. See
the notes section for more information on the need of timeouts.

topMost Only keep this number of candidates (per feature group) with highest score.

batchSize Maximum number of GenForm commands that should be run sequentially in
each parallel process. Combining commands with short runtimes (such as GenForm)
can significantly increase parallel performance. For more information see executeMultiProcess.
Note that this is ignored if ‘patRoon.MP.method="future"’.

setThreshold (sets workflow) Minimum abundance for a candidate among all sets (‘0-1’).
For instance, a value of ‘1’ means that the candidate needs to be present in all
the set data.

setThresholdAnn

(sets workflow) As setThreshold, but only taking into account the set data that
contain annotations for the feature group of the candidate.

setAvgSpecificScores

(sets workflow) If TRUE then set specific scorings (e.g. MS/MS match) are also
averaged.

generateFormulasGenForm 141

Details

This function uses genform to generate formula candidates. This function is called when calling
generateFormulas with algorithm="genform".

When MS/MS data is available it will be used to score candidate formulae by presence of ’fitting’
fragments.

Value

A formulas object containing all generated formulae.

GenForm options

Below is a list of options (generated by running GenForm without commandline options) which can
be set by the extraOpts parameter.

Formula calculation from MS and MS/MS data as described in
Meringer et al (2011) MATCH Commun Math Comput Chem 65: 259-290
Usage: GenForm ms=<filename> [msms=<filename>] [out=<filename>]

[exist[=mv]] [m=<number>] [ion=-e|+e|-H|+H|+Na] [cha=<number>]
[ppm=<number>] [msmv=ndp|nsse|nsae] [acc=<number>] [rej=<number>]
[thms=<number>] [thmsms=<number>] [thcomb=<number>]

[sort[=ppm|msmv|msmsmv|combmv]] [el=<elements> [oc]] [ff=<fuzzy formula>]
[vsp[=<even|odd>]] [vsm2mv[=<value>]] [vsm2ap2[=<value>]] [hcf] [kfer[=ex]]

[wm[=lin|sqrt|log]] [wi[=lin|sqrt|log]] [exp=<number>] [oei]
[dbeexc=<number>] [ivsm2mv=<number>] [vsm2ap2=<number>]
[oms[=<filename>]] [omsms[=<filename>]] [oclean[=<filename>]]
[analyze [loss] [intens]] [dbe] [cm] [pc] [sc] [max]

Explanation:
ms : filename of MS data (*.txt)
msms : filename of MS/MS data (*.txt)
out : output generated formulas
exist : allow only molecular formulas for that at least one

structural formula exists;overrides vsp, vsm2mv, vsm2ap2;
argument mv enables multiple valencies for P and S

m : experimental molecular mass (default: mass of MS basepeak)
ion : type of ion measured (default: M+H)
ppm : accuracy of measurement in parts per million (default: 5)
msmv : MS match value based on normalized dot product, normalized

sum of squared or absolute errors (default: nsae)
acc : allowed deviation for full acceptance of MS/MS peak in ppm

(default: 2)
rej : allowed deviation for total rejection of MS/MS peak in ppm

(default: 4)
thms : threshold for the MS match value
thmsms : threshold for the MS/MS match value
thcomb : threshold for the combined match value
sort : sort generated formulas according to mass deviation in ppm,

MS match value, MS/MS match value or combined match value

142 generateFormulasGenForm

el : used chemical elements (default: CHBrClFINOPSSi)
oc : only organic compounds, i.e. with at least one C atom
ff : overwrites el and oc and uses fuzzy formula for limits of

element multiplicities
het : formulas must have at least one hetero atom
vsp : valency sum parity (even for graphical formulas)
vsm2mv : lower bound for valency sum - 2 * maximum valency

(>=0 for graphical formulas)
vsm2ap2 : lower bound for valency sum - 2 * number of atoms + 2

(>=0 for graphical connected formulas)
hcf : apply Heuerding-Clerc filter
kfer : apply Kind-Fiehn element ratio (extended) ranges
wm : m/z weighting for MS/MS match value
wi : intensity weighting for MS/MS match value
exp : exponent used, when wi is set to log
oei : allow odd electron ions for explaining MS/MS peaks
dbeexc : excess of double bond equivalent for ions
ivsm2mv : lower bound for valency sum - 2 * maximum valency

for fragment ions
ivsm2ap2: lower bound for valency sum - 2 * number of atoms + 2

for fragment ions
oms : write scaled MS peaks to output
omsms : write weighted MS/MS peaks to output
oclean : write explained MS/MS peaks to output
analyze : write explanations for MS/MS peaks to output
loss : for analyzing MS/MS peaks write losses instead of fragments
intens : write intensities of MS/MS peaks to output
dbe : write double bond equivalents to output
cm : write calculated ion masses to output
pc : output match values in percent
sc : strip calculated isotope distributions
noref : hide the reference information
max : maximum number of final candidates (0 is no limit)

Parallelization

generateFormulasGenForm uses multiprocessing to parallelize computations. Please see the paral-
lelization section in the handbook for more details and patRoon options for configuration options.

When futures are used for parallel processing (patRoon.MP.method="future"), calculations
with GenForm are done with batch mode disabled (see batchSize argument), which generally limit
overall performance.

Note

This function always sets the ‘exist’ and ‘oei’ GenForm command line options.

Formula calculation with GenForm may produce an excessive number of candidates for high m/z
values (e.g. above 600) and/or many elemental combinations (set by elements). In this scenario

generateFormulasSIRIUS 143

formula calculation may need a very long time. Timeouts are used to avoid excessive computational
times by terminating long running commands (set by the timeout argument).

References

Meringer M, Reinker S, Zhang J, Muller A (2011). “MS/MS Data Improves Automated Determi-
nation of Molecular Formulas by Mass Spectrometry.” MATCH Commun. Math. Comput. Chem.,
65(2), 259–290.

See Also

generateFormulas for more details and other algorithms.

generateFormulasSIRIUS

Generate formula with SIRIUS

Description

Uses SIRIUS to generate chemical formulae candidates.

Usage

generateFormulasSIRIUS(fGroups, ...)

S4 method for signature 'featureGroups'
generateFormulasSIRIUS(

fGroups,
MSPeakLists,
relMzDev = 5,
adduct = NULL,
projectPath = NULL,
elements = "CHNOP",
profile = "qtof",
database = NULL,
noise = NULL,
cores = NULL,
getFingerprints = FALSE,
topMost = 100,
login = FALSE,
alwaysLogin = FALSE,
extraOptsGeneral = NULL,
extraOptsFormula = NULL,
calculateFeatures = TRUE,
featThreshold = 0,
featThresholdAnn = 0.75,
absAlignMzDev = 0.002,

https://bio.informatik.uni-jena.de/software/sirius/

144 generateFormulasSIRIUS

verbose = TRUE,
splitBatches = FALSE,
dryRun = FALSE

)

S4 method for signature 'featureGroupsSet'
generateFormulasSIRIUS(
fGroups,
MSPeakLists,
relMzDev = 5,
adduct = NULL,
projectPath = NULL,
...,
setThreshold = 0,
setThresholdAnn = 0,
setAvgSpecificScores = FALSE

)

Arguments

fGroups featureGroups object for which formulae should be generated. This should
be the same or a subset of the object that was used to create the specified
MSPeakLists. In the case of a subset only the remaining feature groups in the
subset are considered.

... (sets workflow) Further arguments passed to the non-sets workflow method.

MSPeakLists An MSPeakLists object that was generated for the supplied fGroups.

relMzDev Maximum relative deviation between the measured and candidate formula m/z
values (in ppm). Sets the ‘--ppm-max’ command line option.

adduct An adduct object (or something that can be converted to it with as.adduct).
Examples: "[M-H]-", "[M+Na]+". If the featureGroups object has adduct
annotations then these are used if adducts=NULL.
(sets workflow) The adduct argument is not supported for sets workflows, since
the adduct annotations will then always be used.

projectPath, dryRun
These are mainly for internal purposes. projectPath sets the output directory
for the SIRIUS output (a temporary directory if NULL). If dryRun is TRUE then no
computations are done and only the results from projectPath are processed.
(sets workflow) projectPath should be a character specifying the paths for
each set.

elements Elements to be considered for formulae calculation. This will heavily affects
the number of candidates! Always try to work with a minimal set by excluding
elements you don’t expect. The minimum/maximum number of elements can
also be specified, for example: a value of "C[5]H[10-15]O" will only consider
formulae with up to five carbon atoms, between ten and fifteen hydrogen atoms
and any amount of oxygen atoms. Sets the ‘--elements’ command line option.

profile Name of the configuration profile, for example: ‘"qtof"’, ‘"orbitrap"’, ‘"fticr"’.
Sets the ‘--profile’ commandline option.

generateFormulasSIRIUS 145

database If not NULL, use a database for retrieval of formula candidates. Possible values
are: ‘"pubchem"’, ‘"bio"’, ‘"kegg"’, ‘"hmdb"’. Sets the ‘--database’ com-
mandline option.

noise Median intensity of the noise (NULL ignores this parameter). Sets the ‘--noise’
commandline option.

cores The number of cores SIRIUS will use. If NULL then the default of all cores will
be used.

getFingerprints

Set to TRUE to load SIRIUS-CSI:FingerID MS/MS fingerprints for the formula
candidates. This is currently only supported with calculateFeatures=FALSE
to avoid heavy server traffic. The fingerprints are stored in the fingerprints
slot of the returned formulasSIRIUS object, and are used by the predictTox
and predictRespFactors methods.

topMost Only keep this number of candidates (per feature group) with highest score. Sets
the ‘--candidates’ command line option.

login, alwaysLogin
Specifies if and how account logging of SIRIUS should be handled:
login=FALSE: no automatic login is performed and the active login status is not
checked.
login="check": aborts if no active login is present.
login="interactive": interactively ask for login (using getPass).
login=c(username="...", password="..."): perform the login with the given
details. For security reasons, please do not enter the details directly, but use e.g.
environment variables or store/retrieve them with the keyring package.
if alwaysLogin=TRUE then a login is always performed, otherwise only if SIR-
IUS reports no active login.
See the SIRIUS website and patRoon handbook for more information.

extraOptsGeneral, extraOptsFormula
a character vector with any extra commandline parameters for SIRIUS. For
SIRIUS versions <4.4 there is no distinction between general and formula op-
tions. Otherwise commandline options specified in extraOptsGeneral are added
prior to the formula command, while options specified in extraOptsFormula
are added in afterwards. See the SIRIUS manual for more details. Set to NULL to
ignore.

calculateFeatures

If TRUE fomulae are first calculated for all features prior to feature group assign-
ment (see Candidate assignment in generateFormulas).

featThreshold If calculateFeatures=TRUE: minimum presence (‘0-1’) of a formula in all
features before it is considered as a candidate for a feature group. For instance,
featThreshold=0.75 dictates that a formula should be present in at least 75%
of the features inside a feature group.

featThresholdAnn

As featThreshold, but only considers features with annotations. For instance,
featThresholdAnn=0.75 dictates that a formula should be present in at least
75% of the features with annotations inside a feature group. @param topMost
Only keep this number of candidates (per feature group) with highest score. Sets
the ‘--candidates’ command line option.

https://CRAN.R-project.org/package=getPass
https://CRAN.R-project.org/package=keyring
https://boecker-lab.github.io/docs.sirius.github.io/account-and-license/

146 generateFormulasSIRIUS

absAlignMzDev When the group formula annotation consensus is made from feature annotations,
the m/z values of annotated MS/MS fragments may slightly deviate from those
of the corresponding group MS/MS peak list. The absAlignMzDev argument
specifies the maximum m/z window used to re-align the mass peaks.

verbose If TRUE then more output is shown in the terminal.

splitBatches If TRUE then the calculations done by SIRIUS will be evenly split over multi-
ple SIRIUS calls (which may be run in parallel depending on the set package
options). If splitBatches=FALSE then all feature calculations are performed
from a single SIRIUS execution, which is often the fastest if calculations are
performed on a single computer.

setThreshold (sets workflow) Minimum abundance for a candidate among all sets (‘0-1’).
For instance, a value of ‘1’ means that the candidate needs to be present in all
the set data.

setThresholdAnn

(sets workflow) As setThreshold, but only taking into account the set data that
contain annotations for the feature group of the candidate.

setAvgSpecificScores

(sets workflow) If TRUE then set specific scorings (e.g. MS/MS match) are also
averaged.

Details

This function uses sirius to generate formula candidates. This function is called when calling
generateFormulas with algorithm="sirius".

Similarity of measured and theoretical isotopic patterns will be used for scoring candidates. Note
that SIRIUS requires availability of MS/MS data.

Value

A formulasSIRIUS object.

Parallelization

generateFormulasSIRIUS uses multiprocessing to parallelize computations. Please see the paral-
lelization section in the handbook for more details and patRoon options for configuration options.

Note

For annotations performed with SIRIUS it is often the fastest to keep the default splitBatches=FALSE.
In this case, all SIRIUS output will be printed to the terminal (unless verbose=FALSE or ‘patRoon.MP.method="future"’).
Furthermore, please note that only annotations to be performed for the same adduct are grouped in
a single batch execution.

References

Duhrkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu
J, Bocker S (2019). “SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite struc-
ture information.” Nature Methods, 16(4), 299–302. doi:10.1038/s4159201903448.

https://doi.org/10.1038/s41592-019-0344-8

generateMSPeakLists 147

Duhrkop K, Bocker S (2015). “Fragmentation Trees Reloaded.” In Przytycka TM (ed.), Research
in Computational Molecular Biology, 65–79. ISBN 978-3-319-16706-0.

Duhrkop K, Shen H, Meusel M, Rousu J, Bocker S (2015). “Searching molecular structure databases
with tandem mass spectra using CSI:FingerID.” Proceedings of the National Academy of Sciences,
112(41), 12580–12585. doi:10.1073/pnas.1509788112.

Bocker S, Letzel MC, Liptak Z, Pervukhin A (2008). “SIRIUS: decomposing isotope patterns
for metabolite identification.” Bioinformatics, 25(2), 218–224. doi:10.1093/bioinformatics/btn603.

See Also

generateFormulas for more details and other algorithms.

generateMSPeakLists Generation of MS Peak Lists

Description

Functionality to convert MS and MS/MS data into MS peak lists.

Usage

generateMSPeakLists(fGroups, algorithm, ...)

S4 method for signature 'featureGroups'
generateMSPeakLists(fGroups, algorithm, ...)

Arguments

fGroups The featureGroups object from which MS peak lists should be extracted.

algorithm A character string describing the algorithm that should be used: "bruker",
"brukerfmf", "mzr"

... Any parameters to be passed to the selected MS peak lists generation algorithm.

Details

Formula calculation and identification tools rely on mass spectra that belong to features of interest.
For processing, MS (and MS/MS) spectra are typically reduced to a table with a column containing
measured m/z values and a column containing their intensities. These ’MS peak lists’ can then be
used for formula generation and compound generation.

MS and MS/MS peak lists are first generated for all features (or a subset, if the topMost argument
is set). During this step multiple spectra over the feature elution profile are averaged. Subsequently,
peak lists will be generated for each feature group by averaging peak lists of the features within the
group. Functionality that uses peak lists will either use data from individual features or from group

https://doi.org/10.1073/pnas.1509788112
https://doi.org/10.1093/bioinformatics/btn603

148 generateMSPeakListsDA

averaged peak lists. For instance, the former may be used by formulae calculation, while compound
identification and plotting functionality typically uses group averaged peak lists.

generateMSPeakLists is a generic function that will generateMSPeakLists by one of the sup-
ported algorithms. The actual functionality is provided by algorithm specific functions such as
generateMSPeakListsMzR and generateMSPeakListsDA. While these functions may be called
directly, generateMSPeakLists provides a generic interface and is therefore usually preferred.

Value

A MSPeakLists object.

Sets workflows

With a sets workflow, the feature group averaged peak lists are made per set. This is important,
because for averaging peak lists cannot be mixed, for instance, when different ionization modes
were used to generate the sets. The group averaged peaklists are then simply combined and labelled
in the final peak lists. However, please note that annotation and other functionality typically uses
only the set specific peak lists, as this functionality cannot work with mixed peak lists.

Note

In most cases it will be necessary to centroid your MS input files. The only exception is Bruker,
however, you will still need centroided ‘mzXML’/‘mzML’ files for e.g. plotting chromatograms. In this
case the centroided MS files should be stored in the same directory as the raw Bruker ‘.d’ files.
The convertMSFiles function can be used to centroid data.

See Also

The MSPeakLists output class and its methods and the algorithm specific functions: generateMSPeakListsDA,
generateMSPeakListsDAFMF, generateMSPeakListsMzR

generateMSPeakListsDA Generate peak lists with Bruker DataAnalysis

Description

Uses Bruker DataAnalysis to read the data needed to generate MS peak lists.

Usage

generateMSPeakListsDA(fGroups, ...)

S4 method for signature 'featureGroups'
generateMSPeakListsDA(

fGroups,
bgsubtr = TRUE,
maxMSRtWindow = 5,

generateMSPeakListsDA 149

minMSIntensity = 500,
minMSMSIntensity = 500,
clear = TRUE,
close = TRUE,
save = close,
MSMSType = "MSMS",
avgFGroupParams = getDefAvgPListParams()

)

S4 method for signature 'featureGroupsSet'
generateMSPeakListsDA(fGroups, ...)

Arguments

fGroups The featureGroups object from which MS peak lists should be extracted.
... (sets workflow) Further arguments passed to the non-sets workflow method.
bgsubtr If TRUE background will be subtracted using the ’spectral’ algorithm.
maxMSRtWindow Maximum chromatographic peak window used for spectrum averaging (in sec-

onds, +/- retention time). If NULL all spectra from a feature will be taken into
account. Lower to decrease processing time.

minMSIntensity, minMSMSIntensity
Minimum intensity for peak lists obtained with DataAnalysis. Highly recom-
mended to set ‘>0’ as DA tends to report many very low intensity peaks.

clear Remove any existing chromatogram traces/mass spectra prior to making new
ones.

close, save If TRUE then Bruker files are closed and saved after processing with DataAnal-
ysis, respectively. Setting close=TRUE prevents that many analyses might be
opened simultaneously in DataAnalysis, which otherwise may use excessive
memory or become slow. By default save is TRUE when close is TRUE, which
is likely what you want as otherwise any processed data is lost.

MSMSType The type of MS/MS experiment performed: "MSMS" for MRM/AutoMSMS or
"BBCID" for broadband CID.

avgFGroupParams

A list with parameters used for averaging of peak lists for feature groups. See
getDefAvgPListParams for more details.

Details

This function uses Bruker DataAnalysis to generate MS peak lists. This function is called when
calling generateMSPeakLists with algorithm="bruker".

The MS data should be in the Bruker data format (‘.d’). This function leverages DataAnalysis
functionality to support averaging of spectra, background subtraction and identification of isotopes.
In order to obtain mass spectra TICs will be added in DataAnalysis of the MS and relevant MS/MS
signals.

Value

A MSPeakLists object.

150 generateMSPeakListsDAFMF

Note

The ‘Component’ column should be active (Method–>Parameters–>Layouts–>Mass List Layout) in
order to add isotopologue information.

If any errors related to DCOM appear it might be necessary to terminate DataAnalysis (note that
DataAnalysis might still be running as a background process). The ProcessCleaner application
installed with DataAnalayis can be used for this.

See Also

generateMSPeakLists for more details and other algorithms.

generateMSPeakListsDAFMF

Generate peak lists with Bruker DataAnalysis from bruker features

Description

Uses ’compounds’ that were generated by the Find Molecular Features (FMF) algorithm of Bruker
DataAnalysis to extract MS peak lists.

Usage

generateMSPeakListsDAFMF(fGroups, ...)

S4 method for signature 'featureGroups'
generateMSPeakListsDAFMF(

fGroups,
minMSIntensity = 500,
minMSMSIntensity = 500,
close = TRUE,
save = close,
avgFGroupParams = getDefAvgPListParams()

)

S4 method for signature 'featureGroupsSet'
generateMSPeakListsDAFMF(fGroups, ...)

Arguments

fGroups The featureGroups object from which MS peak lists should be extracted.

... (sets workflow) Further arguments passed to the non-sets workflow method.
minMSIntensity, minMSMSIntensity

Minimum intensity for peak lists obtained with DataAnalysis. Highly recom-
mended to set ‘>0’ as DA tends to report many very low intensity peaks.

generateMSPeakListsMzR 151

close, save If TRUE then Bruker files are closed and saved after processing with DataAnal-
ysis, respectively. Setting close=TRUE prevents that many analyses might be
opened simultaneously in DataAnalysis, which otherwise may use excessive
memory or become slow. By default save is TRUE when close is TRUE, which
is likely what you want as otherwise any processed data is lost.

avgFGroupParams

A list with parameters used for averaging of peak lists for feature groups. See
getDefAvgPListParams for more details.

Details

This function uses Bruker DataAnalysis with FMF to generate MS peak lists. This function is called
when calling generateMSPeakLists with algorithm="brukerfmf".

This function is similar to generateMSPeakListsDA, but uses ’compounds’ that were generated by
the Find Molecular Features (FMF) algorithm to extract MS peak lists. This is generally much faster
, however, it only works when features were obtained with the findFeaturesBruker function.
Since all MS spectra are generated in advance by Bruker DataAnalysis, only few parameters exist
to customize its operation.

Value

A MSPeakLists object.

Note

If any errors related to DCOM appear it might be necessary to terminate DataAnalysis (note that
DataAnalysis might still be running as a background process). The ProcessCleaner application
installed with DataAnalayis can be used for this.

See Also

generateMSPeakLists for more details and other algorithms.

generateMSPeakListsMzR

Generate peak lists with mzR

Description

Uses the mzR package to read the MS data needed for MS peak lists.

152 generateMSPeakListsMzR

Usage

generateMSPeakListsMzR(fGroups, ...)

S4 method for signature 'featureGroups'
generateMSPeakListsMzR(

fGroups,
maxMSRtWindow = 5,
precursorMzWindow = 4,
topMost = NULL,
avgFeatParams = getDefAvgPListParams(),
avgFGroupParams = getDefAvgPListParams()

)

S4 method for signature 'featureGroupsSet'
generateMSPeakListsMzR(fGroups, ...)

Arguments

fGroups The featureGroups object from which MS peak lists should be extracted.

... (sets workflow) Further arguments passed to the non-sets workflow method.

maxMSRtWindow Maximum chromatographic peak window used for spectrum averaging (in sec-
onds, +/- retention time). If NULL all spectra from a feature will be taken into
account. Lower to decrease processing time.

precursorMzWindow

The m/z window (in Da) to find MS/MS spectra of a precursor. This is typi-
cally used for Data-Dependent like MS/MS data and should correspond to the
isolation m/z window (i.e. +/- the precursor m/z) that was used to collect the
data. For Data-Independent MS/MS experiments, where precursor ions are not
isolated prior to fragmentation (e.g. bbCID, MSe, all-ion, ...) the value should
be NULL.

topMost Only extract MS peak lists from a maximum of topMost analyses with highest
intensity. If NULL all analyses will be used.

avgFeatParams Parameters used for averaging MS peak lists of individual features. Analogous
to avgFGroupParams.

avgFGroupParams

A list with parameters used for averaging of peak lists for feature groups. See
getDefAvgPListParams for more details.

Details

This function uses mzR to generate MS peak lists. This function is called when calling generateMSPeakLists
with algorithm="mzr".

The MS data files should be either in ‘.mzXML’ or ‘.mzML’ format.

The input MS data files need to be centroided. The convertMSFiles function can be used to
centroid data.

generateTPs 153

Value

A MSPeakLists object.

References

Chambers, C. M, Maclean, Brendan, Burke, Robert, Amodei, Dario, Ruderman, L. D, Neumann,
Steffen, Gatto, Laurent, Fischer, Bernd, Pratt, Brian, Egertson, Jarrett, Hoff, Katherine, Kessner,
Darren, Tasman, Natalie, Shulman, Nicholas, Frewen, Barbara, Baker, A. T, Brusniak, Mi-Youn,
Paulse, Christopher, Creasy, David, Flashner, Lisa, Kani, Kian, Moulding, Chris, Seymour, L. S,
Nuwaysir, M. L, Lefebvre, Brent, Kuhlmann, Frank, Roark, Joe, Rainer, Paape, Detlev, Suckau,
Hemenway, Tina, Huhmer, Andreas, Langridge, James, Connolly, Brian, Chadick, Trey, Holly,
Krisztina, Eckels, Josh, Deutsch, W. E, Moritz, L. R, Katz, E. J, Agus, B. D, MacCoss, Michael,
Tabb, L. D, Mallick, Parag (2012). “A cross-platform toolkit for mass spectrometry and pro-
teomics.” Nat Biotech, 30(10), 918–920. doi:10.1038/nbt.2377, http://dx.doi.org/10.1038/
nbt.2377.

Keller A, Eng J, Zhang N, Li X, Aebersold R (2005). “A uniform proteomics MS/MS analysis
platform utilizing open XML file formats.” Mol Syst Biol.

Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008). “ProteoWizard: open source soft-
ware for rapid proteomics tools development.” Bioinformatics, 24(21), 2534–2536. doi:10.1093/
bioinformatics/btn323.

Martens L, Chambers M, Sturm M, Kessner D, Levander F, Shofstahl J, Tang WH, Rompp A,
Neumann S, Pizarro AD, Montecchi-Palazzi L, Tasman N, Coleman M, Reisinger F, Souda P, Her-
mjakob H, Binz P, Deutsch EW (2010). “mzML - a Community Standard for Mass Spectrometry
Data.” Mol Cell Proteomics. doi:10.1074/mcp.R110.000133.

Pedrioli PGA, Eng JK, Hubley R, Vogelzang M, Deutsch EW, Raught B, Pratt B, Nilsson E, An-
geletti RH, Apweiler R, Cheung K, Costello CE, Hermjakob H, Huang S, Julian RK, Kapp E,
McComb ME, Oliver SG, Omenn G, Paton NW, Simpson R, Smith R, Taylor CF, Zhu W, Aeber-
sold R (2004). “A common open representation of mass spectrometry data and its application to
proteomics research.” Nat Biotechnol, 22(11), 1459–1466. doi:10.1038/nbt1031.

See Also

generateMSPeakLists for more details and other algorithms.

generateTPs Generation of transformation products (TPs)

Description

Functionality to automatically obtain transformation products for a given set of parent compounds.

Usage

generateTPs(algorithm, ...)

https://doi.org/10.1038/nbt.2377
http://dx.doi.org/10.1038/nbt.2377
http://dx.doi.org/10.1038/nbt.2377
https://doi.org/10.1093/bioinformatics/btn323
https://doi.org/10.1093/bioinformatics/btn323
https://doi.org/10.1074/mcp.R110.000133
https://doi.org/10.1038/nbt1031

154 generateTPsBioTransformer

Arguments

algorithm A character string describing the algorithm that should be used: "biotransformer",
"logic", "library", "library_formula", "cts"

... Any parameters to be passed to the selected TP generation algorithm.

Details

generateTPs is a generic function that will generate transformation products by one of the sup-
ported algorithms. The actual functionality is provided by algorithm specific functions such as
generateTPsBioTransformer and generateTPsLogic. While these functions may be called di-
rectly, generateTPs provides a generic interface and is therefore usually preferred.

Value

A transformationProducts (derived) object containing all generated TPs.

See Also

The transformationProducts output class and its methods and the algorithm specific functions:
generateTPsBioTransformer, generateTPsLogic, generateTPsLibrary, generateTPsLibraryFormula,
generateTPsCTS

The derived class transformationProductsStructure for more specific methods to post-process
TP data.

generateTPsBioTransformer

Obtain transformation products (TPs) with BioTransformer

Description

Uses BioTransformer to predict TPs

Usage

generateTPsBioTransformer(
parents,
type = "env",
generations = 2,
maxExpGenerations = generations + 2,
extraOpts = NULL,
skipInvalid = TRUE,
prefCalcChemProps = TRUE,
neutralChemProps = FALSE,
neutralizeTPs = TRUE,
calcSims = FALSE,
fpType = "extended",

http://biotransformer.ca/

generateTPsBioTransformer 155

fpSimMethod = "tanimoto",
MP = FALSE

)

Arguments

parents The parents for which transformation products should be obtained. This can be
(1) a suspect list (see suspect screening for more information), (2) the resulting
output of screenSuspects or (3) a compounds annotation object. In the former
two cases, the suspect (hits) are used as parents, whereas in the latter case all
candidates are used as parents.

type The type of prediction. Valid values are: "env", "ecbased", "cyp450", "phaseII",
"hgut", "superbio", "allHuman". Sets the -b command line option.

generations The number of generations (steps) for the predictions. Sets the -s command
line option. More generations may be reported, see the Hierarchy expansion
section below.

maxExpGenerations

The maximum number of generations during hierarchy expansion, see below.

extraOpts A character with extra command line options passed to the biotransformer.jar
tool.

skipInvalid If set to TRUE then the parents will be skipped (with a warning) for which insuf-
ficient information (e.g. SMILES) is available.

prefCalcChemProps

If TRUE then calculated chemical properties such as the formula and INCHIKEY
are preferred over what is already present in the parent suspect list. For effi-
ciency reasons it is recommended to set this to TRUE. See the Validating and calculating chemical properties
section for more details.

neutralChemProps

If TRUE then the neutral form of the molecule is considered to calculate SMILES,
formulae etc. Enabling this may improve feature matching when considering
common adducts (e.g. [M+H]+, [M-H]-). See the Validating and calculating chemical properties
section for more details.

neutralizeTPs If TRUE then all resulting TP structure information is neutralized. This argu-
ment has a similar meaning as neutralChemProps. This is defaulted to TRUE
for prediction algorithms, as these may output charged molecules. NOTE: if
neutrlization results in duplicate TPs, i.e. when the neutral form of the TP was
also generated by the algorithm, then the neutralized TP will be removed.

calcSims If set to TRUE then structural similarities between the parent and its TPs are cal-
culated. A minimum similarity can be obtained by using the filter method. May
be useful under the assumption that parents and TPs who have a high struc-
tural similarity, also likely have a high MS/MS spectral similarity (which can be
evaluated after componentization with generateComponentsTPs).

fpType The type of structural fingerprint that should be calculated. See the type argu-
ment of the get.fingerprint function of rcdk.

fpSimMethod The method for calculating similarities (i.e. not dissimilarity!). See the method
argument of the fp.sim.matrix function of the fingerprint package.

https://CRAN.R-project.org/package=rcdk
https://CRAN.R-project.org/package=fingerprint

156 generateTPsBioTransformer

MP If TRUE then multiprocessing is enabled. Since BioTransformer supports native
parallelization, additional multiprocessing generally doesn’t lead to significant
reduction in computational times. Furthermore, enabling multiprocessing can
lead to very high CPU/RAM usage.

Details

This function uses BioTransformer to obtain transformation products. This function is called when
calling generateTPs with algorithm="biotransformer".

In order to use this function the ‘.jar’ command line utility should be installed and specified
in the patRoon.path.BioTransformer option. The ‘.jar’ file can be obtained via https://
bitbucket.org/djoumbou/biotransformer/src/master. Alternatively, the patRoonExt pack-
age can be installed to automatically install/configure the necessary files.

An important advantage of this algorithm is that it provides structural information for generated
TPs. However, this also means that if the input is from a parent suspect list or screening then either
SMILES or INCHI information must be available for the parents.

Value

The TPs are stored in an object derived from the transformationProductsStructure class.

Hierarchy expansion

BioTransformer only reports the direct parent for a TP, not the complete pathway. For instance,
consider the following results:

• parent –> TP1

• parent –> TP2

• TP1 –> TP2

• TP2 –> TP3

In this case, TP3 may be formed either as:

• parent –> TP1 –> TP2 –> TP3

• parent –> TP2 –> TP3

For this reason, patRoon simply expands the hierarchy and assumes that all routes are possible. For
instance,

Parent
/- -\

/- -\
- -
TP1 TP2
| |
| |
TP2 TP3
|
|
TP3

https://bitbucket.org/djoumbou/biotransformer/src/master
https://bitbucket.org/djoumbou/biotransformer/src/master

generateTPsBioTransformer 157

Note that this may result in pathways with more generations than defined by the generations
argument. Thus, the maxExpGenerations argument is used to avoid excessive expansions.

Validating and calculating chemical properties

Chemical properties such as SMILES, INCHIKEY and formula in the parent suspect list are automat-
ically validated and calculated if missing/invalid.

The internal validation/calculation process performs the following steps:

• Validation of SMILES, INCHI, INCHIKEY and formula data (if present). Invalid entries will be
set to NA.

• If neutralChemProps=TRUE then chemical data (SMILES, formulae etc.) is neutralized by
(de-)protonation (using the --neutralized option of OpenBabel). An additional column
molNeutralized is added to mark those molecules that were neutralized. Note that neutral-
ization requires either SMILES or INCHI data to be available.

• The SMILES and INCHI data are used to calculate missing or invalid SMILES, INCHI, INCHIKEY
and formula data. If prefCalcChemProps=TRUE then existing INCHIKEY and formula data is
overwritten by calculated values whenever possible.

• The chemical formulae which were not calculated are verified and normalized. This process
may be time consuming, and is potentially largely avoided by setting prefCalcChemProps=TRUE.

• Neutral masses are calculated for missing values (prefCalcChemProps=FALSE) or whenever
possible (prefCalcChemProps=TRUE).

Note that calculation of formulae for molecules that are isotopically labelled is currently only sup-
ported for deuterium (2H) elements.

This functionality relies heavily on OpenBabel, please make sure it is installed.

Parallelization

generateTPsBioTransformer uses multiprocessing to parallelize computations. Please see the
parallelization section in the handbook for more details and patRoon options for configuration op-
tions.

Note

When the parents argument is a compounds object, the candidate library identifier is used in
case the candidate has no defined compoundName.

References

Guha R (2007). “Chemical Informatics Functionality in R.” Journal of Statistical Software, 18(6).

OBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011). “Open
Babel: An open chemical toolbox.” Journal of Cheminformatics, 3(1). doi:10.1186/17582946333.

Djoumbou-Feunang Y, Fiamoncini J, Gil-de-la-Fuente A, Greiner R, Manach C, Wishart DS (2019).
“BioTransformer: a comprehensive computational tool for small molecule metabolism prediction
and metabolite identification.” Journal of Cheminformatics, 11(1). doi:10.1186/s1332101803245.

https://github.com/openbabel/openbabel
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1186/s13321-018-0324-5

158 generateTPsCTS

Wicker J, Lorsbach T, Gutlein M, Schmid E, Latino D, Kramer S, Fenner K (2015). “enviPath
- The environmental contaminant biotransformation pathway resource.” Nucleic Acids Research,
44(D1), D502–D508. doi:10.1093/nar/gkv1229.

See Also

generateTPs for more details and other algorithms.

generateTPsCTS Obtain transformation products (TPs) with Chemical Transformation
Simulator (CTS)

Description

Uses Chemical Transformation Simulator (CTS) to predict TPs.

Usage

generateTPsCTS(
parents,
transLibrary,
generations = 1,
errorRetries = 3,
skipInvalid = TRUE,
prefCalcChemProps = TRUE,
neutralChemProps = FALSE,
neutralizeTPs = TRUE,
calcLogP = "rcdk",
calcSims = FALSE,
fpType = "extended",
fpSimMethod = "tanimoto",
parallel = TRUE

)

Arguments

parents The parents for which transformation products should be obtained. This can be
(1) a suspect list (see suspect screening for more information), (2) the resulting
output of screenSuspects or (3) a compounds annotation object. In the former
two cases, the suspect (hits) are used as parents, whereas in the latter case all
candidates are used as parents.

transLibrary A character specifying which transformation library should be used. Currently
supported are: "hydrolysis", "abiotic_reduction", "photolysis_unranked",
"photolysis_ranked", "mammalian_metabolism", "combined_abioticreduction_hydrolysis",
"combined_photolysis_abiotic_hydrolysis", "pfas_environmental", "pfas_metabolism".

generations An integer that specifies the number of transformation generations to predict.

https://doi.org/10.1093/nar/gkv1229
https://qed.epa.gov/cts/

generateTPsCTS 159

errorRetries The maximum number of connection retries. Sets the times argument to the
http::RETRY function.

skipInvalid If set to TRUE then the parents will be skipped (with a warning) for which insuf-
ficient information (e.g. SMILES) is available.

prefCalcChemProps

If TRUE then calculated chemical properties such as the formula and INCHIKEY
are preferred over what is already present in the parent suspect list. For effi-
ciency reasons it is recommended to set this to TRUE. See the Validating and calculating chemical properties
section for more details.

neutralChemProps

If TRUE then the neutral form of the molecule is considered to calculate SMILES,
formulae etc. Enabling this may improve feature matching when considering
common adducts (e.g. [M+H]+, [M-H]-). See the Validating and calculating chemical properties
section for more details.

neutralizeTPs If TRUE then all resulting TP structure information is neutralized. This argu-
ment has a similar meaning as neutralChemProps. This is defaulted to TRUE
for prediction algorithms, as these may output charged molecules. NOTE: if
neutrlization results in duplicate TPs, i.e. when the neutral form of the TP was
also generated by the algorithm, then the neutralized TP will be removed.

calcLogP A character specifying whether Log P values should be calculated with rcdk::get.xlogp
(calcLogP="rcdk"), OpenBabel (calcLogP="obabel") or not at all (calcLogP="none").
The log P values will be calculated of parent and TPs to predict their retention
order (retDir).

calcSims If set to TRUE then structural similarities between the parent and its TPs are cal-
culated. A minimum similarity can be obtained by using the filter method. May
be useful under the assumption that parents and TPs who have a high struc-
tural similarity, also likely have a high MS/MS spectral similarity (which can be
evaluated after componentization with generateComponentsTPs).

fpType The type of structural fingerprint that should be calculated. See the type argu-
ment of the get.fingerprint function of rcdk.

fpSimMethod The method for calculating similarities (i.e. not dissimilarity!). See the method
argument of the fp.sim.matrix function of the fingerprint package.

parallel If set to TRUE then code is executed in parallel through the futures package.
Please see the parallelization section in the handbook for more details.

Details

This function uses CTS to obtain transformation products. This function is called when calling
generateTPs with algorithm="cts".

This function uses the httr package to access the Web API of CTS for automatic TP prediction.
Hence, an Internet connection is mandatory. Please take care to not ’abuse’ the CTS servers, e.g.
by running very large batch calculations in parallel, as this may result in rejected connections.

An important advantage of this algorithm is that it provides structural information for generated
TPs. However, this also means that if the input is from a parent suspect list or screening then either
SMILES or INCHI information must be available for the parents.

https://github.com/openbabel/openbabel
https://CRAN.R-project.org/package=rcdk
https://CRAN.R-project.org/package=fingerprint
https://CRAN.R-project.org/package=futures
https://CRAN.R-project.org/package=httr

160 generateTPsCTS

Value

The TPs are stored in an object derived from the transformationProductsStructure class.

Validating and calculating chemical properties

Chemical properties such as SMILES, INCHIKEY and formula in the parent suspect list are automat-
ically validated and calculated if missing/invalid.

The internal validation/calculation process performs the following steps:

• Validation of SMILES, INCHI, INCHIKEY and formula data (if present). Invalid entries will be
set to NA.

• If neutralChemProps=TRUE then chemical data (SMILES, formulae etc.) is neutralized by
(de-)protonation (using the --neutralized option of OpenBabel). An additional column
molNeutralized is added to mark those molecules that were neutralized. Note that neutral-
ization requires either SMILES or INCHI data to be available.

• The SMILES and INCHI data are used to calculate missing or invalid SMILES, INCHI, INCHIKEY
and formula data. If prefCalcChemProps=TRUE then existing INCHIKEY and formula data is
overwritten by calculated values whenever possible.

• The chemical formulae which were not calculated are verified and normalized. This process
may be time consuming, and is potentially largely avoided by setting prefCalcChemProps=TRUE.

• Neutral masses are calculated for missing values (prefCalcChemProps=FALSE) or whenever
possible (prefCalcChemProps=TRUE).

Note that calculation of formulae for molecules that are isotopically labelled is currently only sup-
ported for deuterium (2H) elements.

This functionality relies heavily on OpenBabel, please make sure it is installed.

Note

When the parents argument is a compounds object, the candidate library identifier is used in
case the candidate has no defined compoundName.

References

Guha R (2007). “Chemical Informatics Functionality in R.” Journal of Statistical Software, 18(6).

OBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011). “Open
Babel: An open chemical toolbox.” Journal of Cheminformatics, 3(1). doi:10.1186/17582946333.

Wolfe K, Pope N, Parmar R, Galvin M, Stevens C, Weber E, Flaishans J, Purucker T (2016). “Chem-
ical transformation system: Cloud based cheminformatic services to support integrated environ-
mental modeling.” Proceedings of the 8th International Congress on Environmental Modelling and
Software.

Tebes-Stevens C, Patel JM, Jones WJ, Weber EJ (2017). “Prediction of Hydrolysis Products of
Organic Chemicals under Environmental pH Conditions.” Environmental Science & Technology,
51(9), 5008–5016. doi:10.1021/acs.est.6b05412.

Yuan C, Tebes-Stevens C, Weber EJ (2020). “Reaction Library to Predict Direct Photochemical

https://github.com/openbabel/openbabel
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1021/acs.est.6b05412

generateTPsLibrary 161

Transformation Products of Environmental Organic Contaminants in Sunlit Aquatic Systems.” En-
vironmental Science & Technology, 54(12), 7271–7279. doi:10.1021/acs.est.0c00484.

Yuan C, Tebes-Stevens C, Weber EJ (2021). “Prioritizing Direct Photolysis Products Predicted
by the Chemical Transformation Simulator: Relative Reasoning and Absolute Ranking.” Environ-
mental Science & Technology, 55(9), 5950-5958. doi:10.1021/acs.est.0c08745, PMID: 33881833,
https://doi.org/10.1021/acs.est.0c08745.

OBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011). “Open
Babel: An open chemical toolbox.” Journal of Cheminformatics, 3(1). doi:10.1186/17582946333.

See Also

generateTPs for more details and other algorithms.

The website: https://qed.epa.gov/cts/ and the CTS User guide.

generateTPsLibrary Obtain transformation products (TPs) from a library

Description

Automatically obtains transformation products from a library.

Usage

generateTPsLibrary(
parents = NULL,
TPLibrary = NULL,
generations = 1,
skipInvalid = TRUE,
prefCalcChemProps = TRUE,
neutralChemProps = FALSE,
neutralizeTPs = FALSE,
matchParentsBy = "InChIKey",
matchGenerationsBy = "InChIKey",
calcSims = FALSE,
fpType = "extended",
fpSimMethod = "tanimoto"

)

Arguments

parents The parents for which transformation products should be obtained. This can be
(1) a suspect list (see suspect screening for more information), (2) the resulting
output of screenSuspects or (3) a compounds annotation object. In the former
two cases, the suspect (hits) are used as parents, whereas in the latter case all
candidates are used as parents. If NULL then TPs for all parents in the library are
obtained.

https://doi.org/10.1021/acs.est.0c00484
https://doi.org/10.1021/acs.est.0c08745
https://doi.org/10.1186/1758-2946-3-33
https://qed.epa.gov/cts/
https://www.epa.gov/chemical-research/users-guide-chemical-transformation-simulator-cts

162 generateTPsLibrary

TPLibrary If NULL, a default PubChem based library is used. Otherwise, TPLibrary should
be a data.frame. See the details below.

generations An integer that specifies the number of transformation generations. TPs for
subsequent iterations obtained by repeating the library search where the TPs
from the previous generation are considered parents.

skipInvalid If set to TRUE then the parents will be skipped (with a warning) for which insuf-
ficient information (e.g. SMILES) is available.

prefCalcChemProps

If TRUE then calculated chemical properties such as the formula and INCHIKEY
are preferred over what is already present in the parent suspect list. For effi-
ciency reasons it is recommended to set this to TRUE. See the Validating and calculating chemical properties
section for more details.

neutralChemProps

If TRUE then the neutral form of the molecule is considered to calculate SMILES,
formulae etc. Enabling this may improve feature matching when considering
common adducts (e.g. [M+H]+, [M-H]-). See the Validating and calculating chemical properties
section for more details.

neutralizeTPs If TRUE then all resulting TP structure information is neutralized. This argu-
ment has a similar meaning as neutralChemProps. This is defaulted to TRUE
for prediction algorithms, as these may output charged molecules. NOTE: if
neutrlization results in duplicate TPs, i.e. when the neutral form of the TP was
also generated by the algorithm, then the neutralized TP will be removed.

matchParentsBy A character that specifies how the input parents are matched with the data
from the TP library. Valid options are: "InChIKey", "InChIKey1", "InChI",
"SMILES", "formula", "name". If the parent from the TP library is matched
with multiple input parents then only the first is considered.

matchGenerationsBy

Similar to matchParentsBy, but specifies how parents/TPs are matched when
generations>1.

calcSims If set to TRUE then structural similarities between the parent and its TPs are cal-
culated. A minimum similarity can be obtained by using the filter method. May
be useful under the assumption that parents and TPs who have a high struc-
tural similarity, also likely have a high MS/MS spectral similarity (which can be
evaluated after componentization with generateComponentsTPs).

fpType The type of structural fingerprint that should be calculated. See the type argu-
ment of the get.fingerprint function of rcdk.

fpSimMethod The method for calculating similarities (i.e. not dissimilarity!). See the method
argument of the fp.sim.matrix function of the fingerprint package.

Details

This function uses a library to obtain transformation products. This function is called when calling
generateTPs with algorithm="library".

By default, a library is used that is based on data from PubChem. However, it also possible to use
your own library.

https://doi.org/10.5281/zenodo.5644560
https://CRAN.R-project.org/package=rcdk
https://CRAN.R-project.org/package=fingerprint
https://doi.org/10.5281/zenodo.5644560

generateTPsLibrary 163

An important advantage of this algorithm is that it provides structural information for generated
TPs. However, this also means that if the input is from a parent suspect list or screening then either
SMILES or INCHI information must be available for the parents.

Value

The TPs are stored in an object derived from the transformationProductsStructure class.

TP libraries

The TPLibrary argument is used to specify a custom TP library. This should be a data.frame
where each row specifies a TP for a parent, with the following columns:

• parent_name and TP_name: The name of the parent/TP.

• parent_SMILES and TP_SMILES The SMILES of the parent/TP structure.

• retDir The retention direction of the TP compared to its parent: ‘-1’ (elutes before), ‘1’
(elutes after) or ‘0’ (elutes similarly or unknown). If not specified then the log P values below
may be used to calculate retention time directions. (optional)

• parent_LogP and TP_LogP The log P values for the parent/TP. (optional)
• LogPDiff The difference between parent and TP Log P values. Ignored if both parent_LogP

and TP_LogP are specified. (optional)

Other columns are allowed, and will be included in the final object. Multiple TPs for a single parent
are specified by repeating the value within parent_ columns.

Validating and calculating chemical properties

Chemical properties such as SMILES, INCHIKEY and formula in the parent suspect list are automat-
ically validated and calculated if missing/invalid.

The internal validation/calculation process performs the following steps:

• Validation of SMILES, INCHI, INCHIKEY and formula data (if present). Invalid entries will be
set to NA.

• If neutralChemProps=TRUE then chemical data (SMILES, formulae etc.) is neutralized by
(de-)protonation (using the --neutralized option of OpenBabel). An additional column
molNeutralized is added to mark those molecules that were neutralized. Note that neutral-
ization requires either SMILES or INCHI data to be available.

• The SMILES and INCHI data are used to calculate missing or invalid SMILES, INCHI, INCHIKEY
and formula data. If prefCalcChemProps=TRUE then existing INCHIKEY and formula data is
overwritten by calculated values whenever possible.

• The chemical formulae which were not calculated are verified and normalized. This process
may be time consuming, and is potentially largely avoided by setting prefCalcChemProps=TRUE.

• Neutral masses are calculated for missing values (prefCalcChemProps=FALSE) or whenever
possible (prefCalcChemProps=TRUE).

Note that calculation of formulae for molecules that are isotopically labelled is currently only sup-
ported for deuterium (2H) elements.

This functionality relies heavily on OpenBabel, please make sure it is installed.

https://github.com/openbabel/openbabel

164 generateTPsLibraryFormula

Note

When the parents argument is a compounds object, the candidate library identifier is used in
case the candidate has no defined compoundName.

References

Guha R (2007). “Chemical Informatics Functionality in R.” Journal of Statistical Software, 18(6).

OBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011). “Open
Babel: An open chemical toolbox.” Journal of Cheminformatics, 3(1). doi:10.1186/17582946333.

See Also

generateTPs for more details and other algorithms.

generateTPsLibraryFormula

Obtain transformation products (TPs) from a library with formula
data

Description

Automatically obtains transformation products from a library with formula data.

Usage

generateTPsLibraryFormula(
parents = NULL,
TPLibrary,
generations = 1,
skipInvalid = TRUE,
prefCalcChemProps = TRUE,
neutralChemProps = FALSE,
matchParentsBy = "name",
matchGenerationsBy = "name"

)

Arguments

parents The parents for which transformation products should be obtained. This should
be either a suspect list (see suspect screening for more information) or the re-
sulting output of screenSuspects. The suspect (hits) are used as parents. If
NULL then TPs for all parents in the library are obtained.

TPLibrary A data.frame. See the details below.

generations An integer that specifies the number of transformation generations. TPs for
subsequent iterations obtained by repeating the library search where the TPs
from the previous generation are considered parents.

https://doi.org/10.1186/1758-2946-3-33

generateTPsLibraryFormula 165

skipInvalid If set to TRUE then the parents will be skipped (with a warning) for which insuf-
ficient information (e.g. SMILES) is available.

prefCalcChemProps

If TRUE then calculated chemical properties such as the formula and INCHIKEY
are preferred over what is already present in the parent suspect list. For effi-
ciency reasons it is recommended to set this to TRUE. See the Validating and calculating chemical properties
section for more details.

neutralChemProps

If TRUE then the neutral form of the molecule is considered to calculate SMILES,
formulae etc. Enabling this may improve feature matching when considering
common adducts (e.g. [M+H]+, [M-H]-). See the Validating and calculating chemical properties
section for more details.

matchParentsBy A character that specifies how the input parents are matched with the data
from the TP library. Valid options are: "InChIKey", "InChIKey1", "InChI",
"SMILES", "formula", "name". If the parent from the TP library is matched
with multiple input parents then only the first is considered.

matchGenerationsBy

Similar to matchParentsBy, but specifies how parents/TPs are matched when
generations>1.

Details

This function uses a library to obtain transformation products. This function is called when calling
generateTPs with algorithm="library_formula".

This function is similar to generateTPsLibrary, however, it only require formula information of
the parent and TPs.

Value

The TPs are stored in an object derived from the transformationProductsFormula class.

TP libraries

The TPLibrary argument is used to specify a custom TP library. This should be a data.frame
where each row specifies a TP for a parent, with the following columns:

• parent_name and TP_name: The name of the parent/TP.

• parent_formula and TP_formula The formula of the parent/TP structure.

• retDir The retention direction of the TP compared to its parent: ‘-1’ (elutes before), ‘1’
(elutes after) or ‘0’ (elutes similarly or unknown). If not specified then the log P values below
may be used to calculate retention time directions. (optional)

• parent_LogP and TP_LogP The log P values for the parent/TP. (optional)

• LogPDiff The difference between parent and TP Log P values. Ignored if both parent_LogP
and TP_LogP are specified. (optional)

Other columns are allowed, and will be included in the final object. Multiple TPs for a single parent
are specified by repeating the value within parent_ columns.

166 generateTPsLibraryFormula

Validating and calculating chemical properties

Chemical properties such as SMILES, INCHIKEY and formula in the parent suspect list are automat-
ically validated and calculated if missing/invalid.

The internal validation/calculation process performs the following steps:

• Validation of SMILES, INCHI, INCHIKEY and formula data (if present). Invalid entries will be
set to NA.

• If neutralChemProps=TRUE then chemical data (SMILES, formulae etc.) is neutralized by
(de-)protonation (using the --neutralized option of OpenBabel). An additional column
molNeutralized is added to mark those molecules that were neutralized. Note that neutral-
ization requires either SMILES or INCHI data to be available.

• The SMILES and INCHI data are used to calculate missing or invalid SMILES, INCHI, INCHIKEY
and formula data. If prefCalcChemProps=TRUE then existing INCHIKEY and formula data is
overwritten by calculated values whenever possible.

• The chemical formulae which were not calculated are verified and normalized. This process
may be time consuming, and is potentially largely avoided by setting prefCalcChemProps=TRUE.

• Neutral masses are calculated for missing values (prefCalcChemProps=FALSE) or whenever
possible (prefCalcChemProps=TRUE).

Note that calculation of formulae for molecules that are isotopically labelled is currently only sup-
ported for deuterium (2H) elements.

This functionality relies heavily on OpenBabel, please make sure it is installed.

Note

Unlike generateTPsLibrary, this function defaults the matchParentsBy and matchGenerationsBy
arguments to "name". While matching by formula is also possible, it is likely that duplicate parent
formulae (i.e. isomers) are present in parents and/or TPLibrary, making matching by formula
unsuitable. However, if you are sure that no duplicate formulae are present, it may be better to set
the matching method to "formula".

References

OBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011). “Open
Babel: An open chemical toolbox.” Journal of Cheminformatics, 3(1). doi:10.1186/17582946333.

See Also

generateTPs for more details and other algorithms.

generateTPsLibrary to generate TPs from a library that contains structural information.

genFormulaTPLibrary to automatically generate formula TP libraries.

https://github.com/openbabel/openbabel
https://doi.org/10.1186/1758-2946-3-33

generateTPsLogic 167

generateTPsLogic Obtain transformation products (TPs) with metabolic logic

Description

Automatically calculate potential transformation products with metabolic logic.

Usage

generateTPsLogic(fGroups, minMass = 40, ...)

S4 method for signature 'featureGroups'
generateTPsLogic(fGroups, minMass = 40, adduct = NULL, transformations = NULL)

S4 method for signature 'featureGroupsSet'
generateTPsLogic(fGroups, minMass = 40, transformations = NULL)

Arguments

fGroups A featureGroups object for which TPs should be calculated.

minMass A numeric that specifies the minimum mass of calculated TPs. If below this
mass it will be removed.

... Further arguments specified to the methods.

adduct An adduct object (or something that can be converted to it with as.adduct).
Examples: "[M-H]-", "[M+Na]+". If the featureGroups object has adduct
annotations then these are used if adducts=NULL.
(sets workflow) The adduct argument is not supported for sets workflows, since
the adduct annotations will then always be used.

transformations

A data.frame with transformation reactions to be used for calculating the TPs
(see details below). If NULL, a default table from Schollee et al. is used (see
references).

Details

This function uses metabolic logic to obtain transformation products. This function is called when
calling generateTPs with algorithm="logic".

With this algorithm TPs are predicted from common (environmental) chemical reactions, such as
hydroxylation, demethylation etc. The generated TPs result from calculating the mass differences
between a parent feature after it underwent the reaction. While this only results in little information
on chemical properties of the TP, an advantage of this method is that it does not rely on structural
information of the parent, which may be unknown in a full non-target analysis.

Value

A transformationProducts (derived) object containing all generated TPs.

168 generics

Transformation reactions

The transformations argument specifies custom rules to calculate transformation products. This
should be a data.frame with the following columns:

• transformation The name of the chemical transformation

• add The elements that are added by this reaction (e.g. "O").

• sub The elements that are removed by this reaction (e.g. "H2O").

• retDir The expected retention time direction relative to the parent (assuming a reversed phase
like LC separation). Valid values are: ‘-1’ (elutes before the parent), ‘1’ (elutes after the
parent) or ‘0’ (no significant change or unknown).

Source

The algorithms using transformation reactions are directly based on the work done by Schollee et
al. (see references).

References

Schollee JE, Schymanski EL, Avak SE, Loos M, Hollender J (2015). “Prioritizing Unknown Trans-
formation Products from Biologically-Treated Wastewater Using High-Resolution Mass Spectrom-
etry, Multivariate Statistics, and Metabolic Logic.” Analytical Chemistry, 87(24), 12121–12129.
doi:10.1021/acs.analchem.5b02905.

See Also

generateTPs for more details and other algorithms.

generics Miscellaneous generics

Description

Various (S4) generic functions providing a common interface for common tasks such as plotting
and filtering data. The actual functionality and function arguments are often specific for the imple-
mented methods, for this reason, please refer to the linked method documentation for each generic.

Usage

adducts(obj, ...)

adducts(obj, ...) <- value

algorithm(obj)

analysisInfo(obj)

https://doi.org/10.1021/acs.analchem.5b02905

generics 169

analyses(obj)

annotatedPeakList(obj, ...)

annotations(obj, ...)

calculatePeakQualities(obj, weights = NULL, flatnessFactor = 0.05, ...)

clusterProperties(obj)

clusters(obj)

consensus(obj, ...)

convertToMFDB(TPs, out, ...)

convertToSuspects(obj, ...)

cutClusters(obj)

defaultExclNormScores(obj)

export(obj, type, out, ...)

featureTable(obj, ...)

filter(obj, ...)

getBPCs(obj, ...)

getFeatures(obj)

getMCS(obj, ...)

getTICs(obj, ...)

groupNames(obj)

plotBPCs(obj, ...)

plotChord(obj, addSelfLinks = FALSE, addRetMzPlots = TRUE, ...)

plotChroms(obj, ...)

plotGraph(obj, ...)

plotInt(obj, ...)

170 generics

plotScores(obj, ...)

plotSilhouettes(obj, kSeq, ...)

plotSpectrum(obj, ...)

plotStructure(obj, ...)

plotTICs(obj, ...)

plotVenn(obj, ...)

plotUpSet(obj, ...)

predictRespFactors(obj, ...)

predictTox(obj, ...)

delete(obj, ...)

plotVolcano(obj, ...)

replicateGroups(obj)

setObjects(obj)

sets(obj)

treeCut(obj, k = NULL, h = NULL, ...)

treeCutDynamic(
obj,
maxTreeHeight = 1,
deepSplit = TRUE,
minModuleSize = 1,
...

)

unset(obj, set)

Arguments

obj The object the generic should be applied to.

... Any further method specific arguments. See method documentation for details.

value The replacement value.
weights, flatnessFactor

See method documentation.

TPs The transformationProducts derived object.

generics 171

out Output file.

type The export type.

addSelfLinks If TRUE then ’self-links’ are added which represent non-shared data.

addRetMzPlots Set to TRUE to enable m/z vs retention time scatter plots.

kSeq An integer vector containing the sequence that should be used for average sil-
houette width calculation.

k, h Desired numbers of clusters. See cutree.
maxTreeHeight, deepSplit, minModuleSize

Arguments used by cutreeDynamicTree.

set The name of the set.

Details

adducts returns assigned adducts of the object.

• Methods are defined for: featureGroups; featureGroupsSet.

adducts<- sets adducts of the object.

• Methods are defined for: featureGroups; featureGroupsSet.

algorithm returns the algorithm that was used to generate the object.

• Methods are defined for: optimizationResult; workflowStep.

analysisInfo returns the analysis information from an object.

• Methods are defined for: featureGroups; features; MSPeakListsSet.

analyses returns a character vector with the analyses for which data is present in this object.

• Methods are defined for: featureGroups; features; formulas; MSPeakLists.

annotatedPeakList returns an annotated MS peak list.

• Methods are defined for: compounds; compoundsSet; formulas; formulasSet.

annotations returns annotations.

• Methods are defined for: featureAnnotations; featureGroups; formulas.

calculatePeakQualities calculates chromatographic peak qualities and scores.

• Methods are defined for: featureGroups; features.

clusterProperties Obtain a list with properties of the generated cluster(s).

• Methods are defined for: componentsClust; compoundsCluster.

clusters Obtain clustering object(s).

172 generics

• Methods are defined for: componentsClust; compoundsCluster.

consensus combines and merges data from various algorithms to generate a consensus.

• Methods are defined for: components; componentsSet; compounds; compoundsSet; featureGroupsComparison;
featureGroupsComparisonSet; formulas; formulasSet; transformationProductsStructure.

convertToMFDB Exports the object to a local database that can be used with MetFrag.

• Methods are defined for: .

convertToSuspects Converts an object to a suspect list.

• Methods are defined for: MSLibrary; transformationProducts.

cutClusters Returns assigned cluster indices of a cut cluster.

• Methods are defined for: componentsClust; compoundsCluster.

defaultExclNormScores Returns default scorings that are excluded from normalization.

• Methods are defined for: compounds; formulas.

export exports workflow data to a given format.

• Methods are defined for: featureGroups; featureGroupsSet; MSLibrary.

featureTable returns feature information.

• Methods are defined for: featureGroups; featureGroupsSet; features.

filter provides various functionality to do post-filtering of data.

• Methods are defined for: components; componentsSet; componentsTPs; compounds; compoundsSet;
featureAnnotations; featureGroups; featureGroupsScreening; featureGroupsScreeningSet;
featureGroupsSet; features; featuresSet; formulasSet; MSLibrary; MSPeakLists;
MSPeakListsSet; transformationProducts; transformationProductsStructure.

getBPCs gets base peak chromatogram(s).

• Methods are defined for: featureGroups; features.

getFeatures returns the object’s features object.

• Methods are defined for: featureGroups.

getMCS Calculates the maximum common substructure.

• Methods are defined for: compounds; compoundsCluster.

getTICs gets total ion chromatogram(s).

• Methods are defined for: featureGroups; features.

generics 173

groupNames returns a character vector with the names of the feature groups for which data is
present in this object.

• Methods are defined for: components; compoundsCluster; featureAnnotations; featureGroups;
MSPeakLists.

plotBPCs plots base peak chromatogram(s).

• Methods are defined for: featureGroups; features.

plotChord plots a Chord diagram to assess overlapping data.

• Methods are defined for: featureGroups; featureGroupsComparison.

plotChroms plots extracted ion chromatogram(s).

• Methods are defined for: components; featureGroups.

plotGraph Plots an interactive network graph.

• Methods are defined for: componentsNT; componentsNTSet; componentsTPs; featureGroups;
featureGroupsSet; transformationProductsFormula; transformationProductsStructure.

plotInt plots the intensity of all contained features.

• Methods are defined for: componentsIntClust; featureGroups; featureGroupsSet.

plotScores plots candidate scorings.

• Methods are defined for: compounds; formulas.

plotSilhouettes plots silhouette widths to evaluate the desired cluster size.

• Methods are defined for: componentsClust; compoundsCluster.

plotSpectrum plots a (annotated) spectrum.

• Methods are defined for: components; compounds; compoundsSet; formulas; formulasSet;
MSPeakLists; MSPeakListsSet.

plotStructure plots a chemical structure.

• Methods are defined for: compounds; compoundsCluster.

plotTICs plots total ion chromatogram(s).

• Methods are defined for: featureGroups; features.

plotVenn plots a Venn diagram to assess unique and overlapping data.

• Methods are defined for: featureAnnotations; featureGroups; featureGroupsComparison;
featureGroupsSet; transformationProductsStructure.

174 generics

plotUpSet plots an UpSet diagram to assess unique and overlapping data.

• Methods are defined for: featureAnnotations; featureGroups; featureGroupsComparison;
transformationProductsStructure.

predictRespFactors Prediction of response factors.

• Methods are defined for: compounds; compoundsSet; compoundsSIRIUS; featureGroupsScreening;
featureGroupsScreeningSet; formulasSet; formulasSIRIUS.

predictTox Prediction of toxicity values.

• Methods are defined for: compounds; compoundsSet; compoundsSIRIUS; featureGroupsScreening;
featureGroupsScreeningSet; formulasSet; formulasSIRIUS.

delete Deletes results.

• Methods are defined for: components; componentsClust; componentsSet; compoundsSet;
compoundsSIRIUS; featureAnnotations; featureGroups; featureGroupsKPIC2; featureGroupsScreening;
featureGroupsScreeningSet; featureGroupsSet; featureGroupsXCMS; featureGroupsXCMS3;
features; featuresKPIC2; featuresXCMS; featuresXCMS3; formulas; formulasSet; formulasSIRIUS;
MSLibrary; MSPeakLists; MSPeakListsSet; transformationProducts.

plotVolcano plots a volcano plot.

• Methods are defined for: featureGroups.

replicateGroups returns a character vector with the analyses for which data is present in this
object.

• Methods are defined for: featureGroups; features.

setObjects returns the set objects of this object. See the documentation of workflowStepSet.

• Methods are defined for: workflowStepSet.

sets returns the names of the sets inside this object. See the documentation for sets workflows.

• Methods are defined for: featureGroupsSet; featuresSet; workflowStepSet.

treeCut Manually cut a cluster.

• Methods are defined for: componentsClust; compoundsCluster.

treeCutDynamic Automatically cut a cluster.

• Methods are defined for: componentsClust; compoundsCluster.

unset Converts this object to a regular non-set object. See the documentation for sets workflows.

• Methods are defined for: componentsNTSet; componentsSet; compoundsConsensusSet;
compoundsSet; featureGroupsScreeningSet; featureGroupsSet; featuresSet; formulasConsensusSet;
formulasSet; MSPeakListsSet.

generics 175

Other generics

Below are methods that are defined for existing generics (e.g. defined in base). Please see method
specific documentation for more details.

[Subsets data within an object.

• Methods are defined for: components,ANY,ANY,missing; componentsSet,ANY,ANY,missing;
compoundsCluster,ANY,missing,missing; compoundsSet,ANY,missing,missing; featureAnnotations,ANY,missing,missing;
featureGroups,ANY,ANY,missing; featureGroupsComparison,ANY,missing,missing; featureGroupsScreening,ANY,ANY,missing;
featureGroupsScreeningSet,ANY,ANY,missing; featureGroupsSet,ANY,ANY,missing;
features,ANY,missing,missing; featuresSet,ANY,missing,missing; formulasSet,ANY,missing,missing;
MSLibrary,ANY,missing,missing; MSPeakLists,ANY,ANY,missing; MSPeakListsSet,ANY,ANY,missing;
transformationProducts,ANY,missing,missing.

[[Extract data from an object.

• Methods are defined for: components,ANY,ANY; featureAnnotations,ANY,missing; featureGroups,ANY,ANY;
featureGroupsComparison,ANY,missing; features,ANY,missing; formulas,ANY,ANY;
MSLibrary,ANY,missing; MSPeakLists,ANY,ANY; transformationProducts,ANY,missing.

$ Extract data from an object.

• Methods are defined for: components; featureAnnotations; featureGroups; featureGroupsComparison;
features; MSLibrary; MSPeakLists; transformationProducts.

as.data.table Converts an object to a table (data.table).

• Methods are defined for: components; componentsTPs; featureAnnotations; featureGroups;
featureGroupsScreening; featureGroupsScreeningSet; features; featuresSet; formulas;
MSLibrary; MSPeakLists; MSPeakListsSet; transformationProducts; workflowStep.

as.data.frame Converts an object to a table (data.frame).

• Methods are defined for: workflowStep.

length Returns the length of an object.

• Methods are defined for: components; compoundsCluster; featureAnnotations; featureGroups;
featureGroupsComparison; features; MSLibrary; MSPeakLists; optimizationResult;
transformationProducts.

lengths Returns the lengths of elements within this object.

• Methods are defined for: compoundsCluster; optimizationResult.

names Return names for this object.

• Methods are defined for: components; featureGroups; featureGroupsComparison; MSLibrary;
transformationProducts.

plot Generates a plot for an object.

176 genFormulaTPLibrary

• Methods are defined for: componentsClust,missing; compoundsCluster,missing; featureGroups,missing;
featureGroupsComparison,missing; optimizationResult,missing.

show Prints information about this object.

• Methods are defined for: adduct; components; componentsFeatures; componentsSet;
compounds; compoundsCluster; compoundsSet; featureGroups; featureGroupsScreening;
featureGroupsScreeningSet; featureGroupsSet; features; featuresSet; formulas;
formulasSet; MSLibrary; MSPeakLists; MSPeakListsSet; optimizationResult; transformationProducts;
workflowStep; workflowStepSet.

genFormulaTPLibrary Automatically generate a transformation product library with formula
data.

Description

Functionality to automatically generate a TP library with formula data from a set of transformation
rules, which can be used with generateTPsLibraryFormula. TP calculation will be skipped if the
transformation involves subtraction of elements not present in the parent.

Usage

genFormulaTPLibrary(
parents,
transformations = NULL,
minMass = 40,
generations = 1,
skipInvalid = TRUE,
prefCalcChemProps = TRUE,
neutralChemProps = FALSE

)

Arguments

parents The parents to which the given transformation rules should be used to generate
the TP library. Should be either a suspect list (see suspect screening for more
information) or the resulting output of screenSuspects.

transformations

A data.frame with transformation reactions to be used for calculating the TPs
(see details below). If NULL, a default table from Schollee et al. is used (see
references).

minMass The minimum mass for a TP to be kept.

generations An integer that specifies the number of transformation generations that should
be calculated. If generations>1 then TPs are calculated by applying the trans-
formation rules to the TPs generated in the previous generation.

genFormulaTPLibrary 177

skipInvalid Set to TRUE to skip parents without formula information. Otherwise an error is
thrown.

prefCalcChemProps

If TRUE then calculated chemical properties such as the formula and INCHIKEY
are preferred over what is already present in the parent suspect list. For effi-
ciency reasons it is recommended to set this to TRUE. See the Validating and calculating chemical properties
section for more details.

neutralChemProps

If TRUE then the neutral form of the molecule is considered to calculate SMILES,
formulae etc. Enabling this may improve feature matching when considering
common adducts (e.g. [M+H]+, [M-H]-). See the Validating and calculating chemical properties
section for more details.

Value

A data.table that is suitable for the TPLibrary argument to generateTPsLibraryFormula.

Transformation reactions

The transformations argument specifies custom rules to calculate transformation products. This
should be a data.frame with the following columns:

• transformation The name of the chemical transformation

• add The elements that are added by this reaction (e.g. "O").

• sub The elements that are removed by this reaction (e.g. "H2O").

• retDir The expected retention time direction relative to the parent (assuming a reversed phase
like LC separation). Valid values are: ‘-1’ (elutes before the parent), ‘1’ (elutes after the
parent) or ‘0’ (no significant change or unknown).

Source

The algorithms using transformation reactions are directly based on the work done by Schollee et
al. (see references).

Validating and calculating chemical properties

Chemical properties such as SMILES, INCHIKEY and formula in the parent suspect list are automat-
ically validated and calculated if missing/invalid.

The internal validation/calculation process performs the following steps:

• Validation of SMILES, INCHI, INCHIKEY and formula data (if present). Invalid entries will be
set to NA.

• If neutralChemProps=TRUE then chemical data (SMILES, formulae etc.) is neutralized by
(de-)protonation (using the --neutralized option of OpenBabel). An additional column
molNeutralized is added to mark those molecules that were neutralized. Note that neutral-
ization requires either SMILES or INCHI data to be available.

• The SMILES and INCHI data are used to calculate missing or invalid SMILES, INCHI, INCHIKEY
and formula data. If prefCalcChemProps=TRUE then existing INCHIKEY and formula data is
overwritten by calculated values whenever possible.

178 getDefAvgPListParams

• The chemical formulae which were not calculated are verified and normalized. This process
may be time consuming, and is potentially largely avoided by setting prefCalcChemProps=TRUE.

• Neutral masses are calculated for missing values (prefCalcChemProps=FALSE) or whenever
possible (prefCalcChemProps=TRUE).

Note that calculation of formulae for molecules that are isotopically labelled is currently only sup-
ported for deuterium (2H) elements.

This functionality relies heavily on OpenBabel, please make sure it is installed.

References

Schollee JE, Schymanski EL, Avak SE, Loos M, Hollender J (2015). “Prioritizing Unknown Trans-
formation Products from Biologically-Treated Wastewater Using High-Resolution Mass Spectrom-
etry, Multivariate Statistics, and Metabolic Logic.” Analytical Chemistry, 87(24), 12121–12129.
doi:10.1021/acs.analchem.5b02905.

OBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011). “Open
Babel: An open chemical toolbox.” Journal of Cheminformatics, 3(1). doi:10.1186/17582946333.

See Also

generateTPsLibraryFormula and generateTPsLogic

getDefAvgPListParams Parameters for averaging MS peak list data

Description

Create parameter lists for averaging MS peak list data.

Usage

getDefAvgPListParams(...)

Arguments

... Optional named arguments that override defaults.

Details

The parameters set used for averaging peak lists are set by the avgFeatParams and avgFGroupParams
arguments to generateMSPeakLists and its related algorithm specific functions. The parameters
are specified as a named list with the following values:

• clusterMzWindow m/z window (in Da) used for clustering m/z values when spectra are aver-
aged. For method="hclust" this corresponds to the cluster height, while for method="distance"
this value is used to find nearby masses (+/- window). Too small windows will prevent clus-
tering m/z values (thus erroneously treating equal masses along spectra as different), whereas
too big windows may cluster unrelated m/z values from different or even the same spectrum
together.

https://github.com/openbabel/openbabel
https://doi.org/10.1021/acs.analchem.5b02905
https://doi.org/10.1186/1758-2946-3-33

getDefAvgPListParams 179

• topMost Only retain this maximum number of MS peaks when generating averaged spectra.
Lowering this number may exclude more irrelevant (noisy) MS peaks and decrease processing
time, whereas higher values may avoid excluding lower intense MS peaks that may still be of
interest.

• minIntensityPre MS peaks with intensities below this value will be removed (applied prior
to selection by topMost) before averaging.

• minIntensityPost MS peaks with intensities below this value will be removed after averag-
ing.

• avgFun Function that is used to calculate average m/z values.

• method Method used for producing averaged MS spectra. Valid values are "hclust", used for
hierarchical clustering (using the fastcluster package), and "distance", to use the between
peak distance. The latter method may reduces processing time and memory requirements, at
the potential cost of reduced accuracy.

• pruneMissingPrecursorMS For MS data only: if TRUE then peak lists without a precursor
peak are removed. Note that even when this is set to FALSE, functionality that relies on MS
(not MS/MS) peak lists (e.g. formulae calulcation) will still skip calculation if a precursor is
not found.

• retainPrecursorMSMS For MS/MS data only: if TRUE then always retain the precursor mass
peak even if is not amongst the topMost peaks. Note that MS precursor mass peaks are
always kept. Furthermore, note that precursor peaks in both MS and MS/MS data may still be
removed by intensity thresholds (this is unlike the filter method function).

The getDefAvgPListParams function can be used to generate a default parameter list. The current
defaults are:

clusterMzWindow=0.005; topMost=50; minIntensityPre=500; minIntensityPost=500; avgFun=mean;
method="hclust"; pruneMissingPrecursorMS=TRUE; retainPrecursorMSMS=TRUE

Value

getDefAvgPListParams returns a list with the peak list averaging parameters.

Source

Averaging of mass spectra algorithms used by are based on the msProcess R package (now archived
on CRAN).

Note

With Bruker algorithms these parameters only control generation of feature groups averaged peak
lists: how peak lists for features are generated is controlled by DataAnalysis.

References

Müllner D (2013). “fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and
Python.” Journal of Statistical Software, 53(9), 1–18. doi:10.18637/jss.v053.i09.

https://github.com/zeehio/msProcess
https://doi.org/10.18637/jss.v053.i09

180 getFCParams

getEICs Obtains extracted ion chromatograms (EICs)

Description

This function generates one or more EIC(s) for given retention time and m/z ranges.

Usage

getEICs(file, ranges)

Arguments

file The file path to the sample analysis data file (‘.mzXML’ or ‘.mzML’).

ranges A data.frame with numeric columns "retmin", "retmin", "mzmin", "mzmax"
with the lower/upper ranges of the retention time and m/z.

Value

A list with EIC data for each of the rows in ranges.

getFCParams Fold change calculation

Description

Fold change calculation

Usage

getFCParams(rGroups, ...)

Arguments

rGroups A character vector with the names of the two replicate groups to be compared.

... Optional named arguments that override defaults.

getPICSet 181

Details

Fold change calculation can be used to easily identify significant changes between replicate groups.
The calculation process is configured through a paramater list, which can be constructed with the
getFCParams function. The parameter list has the following entries:

• rGroups the name of the two replicate groups to compare (taken from the rGroups argument
to getFCParams).

• thresholdFC: the threshold log FC for a feature group to be classified as increasing/decreasing.
• thresholdPV: the threshold log P for a feature group to be significantly different.
• zeroMethod,zeroValue: how to handle zero values when calculating the FC: add adds an

offset to zero values, "fixed" sets zero values to a fixed number and "omit" removes zero
data. The number that is added/set by the former two options is defined by zeroValue.

• PVTestFunc: a function that is used to calculate P values (usually using t.test).
• PVAdjFunc: a function that is used to adjust P values (usually using p.adjust)

Author(s)

The code to calculate and plot Fold change data was created by Bas van de Velde.

See Also

featureGroups-class and feature-plotting

getPICSet Conversion to KPIC2 objects

Description

Converts a features object to an KPIC object.

Usage

getPICSet(obj, ...)

S4 method for signature 'features'
getPICSet(obj, loadRawData = TRUE)

S4 method for signature 'featuresKPIC2'
getPICSet(obj, ...)

Arguments

obj The features object that should be converted.
... Ignored
loadRawData Set to TRUE if analyses are available as mzXML or mzML files. Otherwise MS data

is not loaded, and some dummy data (e.g. file paths) is used in the returned
object.

182 getXCMSSet

getXCMSSet Conversion to XCMS objects

Description

Converts a features or featureGroups object to an xcmsSet or XCMSnExp object.

Usage

getXCMSSet(obj, verbose = TRUE, ...)

getXCMSnExp(obj, verbose = TRUE, ...)

S4 method for signature 'features'
getXCMSSet(obj, verbose, loadRawData)

S4 method for signature 'featuresXCMS'
getXCMSSet(obj, verbose = TRUE, ...)

S4 method for signature 'featureGroups'
getXCMSSet(obj, verbose, loadRawData)

S4 method for signature 'featureGroupsXCMS'
getXCMSSet(obj, verbose, loadRawData)

S4 method for signature 'featuresSet'
getXCMSSet(obj, ..., set)

S4 method for signature 'featureGroupsSet'
getXCMSSet(obj, ..., set)

S4 method for signature 'features'
getXCMSnExp(obj, verbose, loadRawData)

S4 method for signature 'featuresXCMS3'
getXCMSnExp(obj, verbose = TRUE, ...)

S4 method for signature 'featureGroups'
getXCMSnExp(obj, verbose, loadRawData)

S4 method for signature 'featureGroupsXCMS3'
getXCMSnExp(obj, verbose, loadRawData)

S4 method for signature 'featuresSet'
getXCMSnExp(obj, ..., set)

S4 method for signature 'featureGroupsSet'

groupFeatures 183

getXCMSnExp(obj, ..., set)

Arguments

obj The object that should be converted.

verbose If FALSE then no text output is shown.

... (sets workflow) Further arguments passed to non-sets method.
Otherwise ignored.

loadRawData Set to TRUE if analyses are available as mzXML or mzML files. Otherwise MS data
is not loaded, and some dummy data (e.g. file paths) is used in the returned
object.

set (sets workflow) The name of the set to be exported.

Sets workflows

In a sets workflow, unset is used to convert the feature (group) data before the object is exported.

groupFeatures Grouping of features

Description

Group equal features across analyses.

Usage

groupFeatures(obj, algorithm, ...)

S4 method for signature 'features'
groupFeatures(obj, algorithm, ..., verbose = TRUE)

S4 method for signature 'data.frame'
groupFeatures(obj, algorithm, ..., verbose = TRUE)

Arguments

obj Either a features object to be grouped, or a data.frame with analysis info to
be passed to groupFeaturesSIRIUS

algorithm A character that specifies the algorithm to be used: either "openms", "xcms",
"xcms3" or "kpic2" (features method), or "sirius" (data.frame method).

... Further parameters passed to the selected grouping algorithm.

verbose if FALSE then no text output will be shown.

184 groupFeaturesKPIC2

Details

After features have been found, the next step is to align and group them across analyses. This
process is necessary to allow comparison of features between multiple analyses, which otherwise
would be difficult due to small deviations in retention and mass data. Thus, algorithms of ’feature
groupers’ are used to collect features with similar retention and mass data. In addition, advanced
retention time alignment algorithms exist to enhance grouping of features even with relative large
retention time deviations (e.g. possibly observed from analyses collected over a long period). Like
findFeatures, various algorithms are supported which may have many parameters that can be fine-
tuned. This fine-tuning is likely to be necessary, since optimal settings often depend on applied
methodology and instrumentation.

groupFeatures is a generic function that will groupFeatures by one of the supported algorithms.
The actual functionality is provided by algorithm specific functions such as groupFeaturesOpenMS
and groupFeaturesXCMS3. While these functions may be called directly, groupFeatures provides
a generic interface and is therefore usually preferred.

The data.frame method for groupFeatures is a special case that currently only supports the
"sirius" algorithm.

Value

An object of a class which is derived from featureGroups.

See Also

The featureGroups output class and its methods and the algorithm specific functions: groupFeaturesOpenMS,
groupFeaturesXCMS, groupFeaturesXCMS3, groupFeaturesKPIC2, groupFeaturesSIRIUS

groupFeaturesKPIC2 Group features using KPIC2

Description

Uses the the KPIC2 R package for grouping of features.

Usage

groupFeaturesKPIC2(feat, ...)

S4 method for signature 'features'
groupFeaturesKPIC2(

feat,
rtalign = TRUE,
loadRawData = TRUE,
groupArgs = list(tolerance = c(0.005, 12)),
alignArgs = list(),
verbose = TRUE

)

https://github.com/hcji/KPIC2

groupFeaturesKPIC2 185

S4 method for signature 'featuresSet'
groupFeaturesKPIC2(

feat,
groupArgs = list(tolerance = c(0.005, 12)),
verbose = TRUE

)

Arguments

feat The features object with the features to be grouped.

... Further parameters passed to the selected grouping algorithm.

rtalign Set to TRUE to enable retention time alignment.

loadRawData Set to TRUE if analyses are available as mzXML or mzML files. Otherwise MS data
is not loaded, and some dummy data (e.g. file paths) is used in the returned
object.

groupArgs, alignArgs
Named character vector that may contain extra parameters to be used by
KPIC::PICset.group and KPIC::PICset.align, respectively.

verbose if FALSE then no text output will be shown.

Details

This function uses KPIC2 to group features. This function is called when calling groupFeatures
with algorithm="kpic2".

Grouping of features and alignment of their retention times are performed with the KPIC::PICset.group
and KPIC::PICset.align functions, respectively.

Value

An object of a class which is derived from featureGroups.

Sets workflows

loadRawData and arguments related to retention time alignment are currently not supported for sets
workflows.

References

Ji H, Zeng F, Xu Y, Lu H, Zhang Z (2017). “KPIC2: An Effective Framework for Mass Spectrometry-
Based Metabolomics Using Pure Ion Chromatograms.” Analytical Chemistry, 89(14), 7631–7640.
doi:10.1021/acs.analchem.7b01547.

See Also

groupFeatures for more details and other algorithms.

https://doi.org/10.1021/acs.analchem.7b01547

186 groupFeaturesOpenMS

groupFeaturesOpenMS Group features using OpenMS

Description

Group and align features with OpenMS tools

Usage

groupFeaturesOpenMS(feat, ...)

S4 method for signature 'features'
groupFeaturesOpenMS(

feat,
rtalign = TRUE,
QT = FALSE,
maxAlignRT = 30,
maxAlignMZ = 0.005,
maxGroupRT = 12,
maxGroupMZ = 0.005,
extraOptsRT = NULL,
extraOptsGroup = NULL,
verbose = TRUE

)

S4 method for signature 'featuresSet'
groupFeaturesOpenMS(feat, ..., verbose = TRUE)

Arguments

feat The features object with the features to be grouped.

... Further parameters passed to the selected grouping algorithm.

rtalign Set to TRUE to enable retention time alignment.

QT If enabled, use FeatureLinkerUnlabeledQT instead of FeatureLinkerUnlabeled
for feature grouping.

maxAlignRT, maxAlignMZ
Used for retention alignment. Maximum retention time or m/z difference (sec-
onds/Dalton) for feature pairing. Sets -algorithm:pairfinder:distance_RT:max_difference
and -algorithm:pairfinder:distance_MZ:max_difference otpions, respec-
tively.

maxGroupRT, maxGroupMZ
as maxAlignRT and maxAlignMZ, but for grouping of features. Sets -algorithm:distance_RT:max_difference
and -algorithm:distance_MZ:max_difference options, respectively.

extraOptsRT, extraOptsGroup
Named list containing extra options that will be passed to MapAlignerPoseClustering
or FeatureLinkerUnlabeledQT/FeatureLinkerUnlabeled, respectively. Any

groupFeaturesOpenMS 187

options specified here will override any of the above. Example: extraOptsGroup=list("-algorithm:distance_RT:max_difference"=12)
(corresponds to setting maxGroupRT=12). Set to NULL to ignore.

verbose if FALSE then no text output will be shown.

Details

This function uses OpenMS to group features. This function is called when calling groupFeatures
with algorithm="openms".

Retention times may be aligned by the MapAlignerPoseClustering TOPP tool. Grouping is achieved
by either the FeatureLinkerUnlabeled or FeatureLinkerUnlabeledQT TOPP tools.

Value

An object of a class which is derived from featureGroups.

References

Rost HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti S, Ehrlich H, Guten-
brunner P, Kenar E, Liang X, Nahnsen S, Nilse L, Pfeuffer J, Rosenberger G, Rurik M, Schmitt
U, Veit J, Walzer M, Wojnar D, Wolski WE, Schilling O, Choudhary JS, Malmstrom L, Aebersold
R, Reinert K, Kohlbacher O (2016). “OpenMS: a flexible open-source software platform for mass
spectrometry data analysis.” Nature Methods, 13(9), 741–748. doi:10.1038/nmeth.3959.

pugixml (via Rcpp) is used to process OpenMS XML output.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer, New York. doi:10.1007/
9781461468684, ISBN 978-1-4614-6867-7.

Eddelbuettel D, Balamuta J (2018). “Extending R with C++: A Brief Introduction to Rcpp.” The
American Statistician, 72(1), 28-36. doi:10.1080/00031305.2017.1375990.

Eddelbuettel D, Francois R, Allaire J, Ushey K, Kou Q, Russell N, Ucar I, Bates D, Chambers J
(2025). Rcpp: Seamless R and C++ Integration. R package version 1.0.14, https://dirk.eddelbuettel.com/code/rcpp.html,
https://github.com/RcppCore/Rcpp, https://www.rcpp.org.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of Statistical
Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.1

See Also

groupFeatures for more details and other algorithms.

https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_MapAlignerPoseClustering.html
https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_FeatureLinkerUnlabeled.html
https://abibuilder.cs.uni-tuebingen.de/archive/openms/Documentation/nightly/html/TOPP_FeatureLinkerUnlabeledQT.html
https://doi.org/10.1038/nmeth.3959
https://pugixml.org/
http://www.rcpp.org/
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1080/00031305.2017.1375990
https://www.rcpp.org
https://doi.org/10.18637/jss.v040.i08

188 groupFeaturesSIRIUS

groupFeaturesSIRIUS Group features using SIRIUS

Description

Uses SIRIUS to find and group features.

Usage

groupFeaturesSIRIUS(analysisInfo, verbose = TRUE)

Arguments

analysisInfo A data.frame with Analysis information.

verbose if FALSE then no text output will be shown.

Details

This function uses SIRIUS to group features. This function is called when calling groupFeatures
with algorithm="sirius".

Finding and grouping features is done by running the lcms-align command on every analyses at
once. For this reason, grouping feature data from other algorithms than SIRIUS is not supported.

The MS files should be in the ‘mzML’ or ‘mzXML’ format. Furthermore, this algorithms requires the
presence of (data-dependent) MS/MS data.

The input MS data files need to be centroided. The convertMSFiles function can be used to
centroid data.

Value

An object of a class which is derived from featureGroups.

References

Duhrkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu
J, Bocker S (2019). “SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite
structure information.” Nature Methods, 16(4), 299–302. doi:10.1038/s4159201903448.

See Also

groupFeatures for more details and other algorithms.

https://bio.informatik.uni-jena.de/software/sirius/
https://doi.org/10.1038/s41592-019-0344-8

groupFeaturesXCMS 189

groupFeaturesXCMS Group features using XCMS (old interface)

Description

Group and align features with the legacy xcmsSet function from the xcms package.

Usage

groupFeaturesXCMS(feat, ...)

S4 method for signature 'features'
groupFeaturesXCMS(

feat,
rtalign = TRUE,
loadRawData = TRUE,
groupArgs = list(mzwid = 0.015),
retcorArgs = list(method = "obiwarp"),
verbose = TRUE

)

S4 method for signature 'featuresSet'
groupFeaturesXCMS(feat, groupArgs = list(mzwid = 0.015), verbose = TRUE)

Arguments

feat The features object with the features to be grouped.

... Further parameters passed to the selected grouping algorithm.

rtalign Set to TRUE to enable retention time alignment.

loadRawData Set to TRUE if analyses are available as mzXML or mzML files. Otherwise MS data
is not loaded, and some dummy data (e.g. file paths) is used in the returned
object.

groupArgs named character vector that may contain extra grouping parameters to be
used by xcms::group

retcorArgs named character vector that may contain extra parameters to be used by
xcms::retcor.

verbose if FALSE then no text output will be shown.

Details

This function uses XCMS to group features. This function is called when calling groupFeatures
with algorithm="xcms".

Grouping of features and alignment of their retention times are performed with the xcms::group
and xcms::retcor functions, respectively. Both functions have an extensive list of parameters to
modify their behavior and may therefore be used to potentially optimize results.

190 groupFeaturesXCMS3

Value

An object of a class which is derived from featureGroups.

Sets workflows

loadRawData and arguments related to retention time alignment are currently not supported for sets
workflows.

References

Benton HP, Want EJ, Ebbels TMD (2010). “Correction of mass calibration gaps in liquid chromatography-
mass spectrometry metabolomics data.” BIOINFORMATICS, 26, 2488.

Smith, C.A., Want, E.J., O’Maille, G., Abagyan,R., Siuzdak, G. (2006). “XCMS: Processing mass
spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identifi-
cation.” Analytical Chemistry, 78, 779–787.

Tautenhahn R, Boettcher C, Neumann S (2008). “Highly sensitive feature detection for high reso-
lution LC/MS.” BMC Bioinformatics, 9, 504.

See Also

groupFeatures for more details and other algorithms.

groupFeaturesXCMS3 Group features using XCMS (new interface)

Description

Uses the new xcms3 interface from the xcms package to find features.

Usage

groupFeaturesXCMS3(feat, ...)

S4 method for signature 'features'
groupFeaturesXCMS3(

feat,
rtalign = TRUE,
loadRawData = TRUE,
groupParam = xcms::PeakDensityParam(sampleGroups = analysisInfo(feat)$group),
preGroupParam = groupParam,
retAlignParam = xcms::ObiwarpParam(),
verbose = TRUE

)

S4 method for signature 'featuresSet'

groupFeaturesXCMS3 191

groupFeaturesXCMS3(
feat,
groupParam = xcms::PeakDensityParam(sampleGroups = analysisInfo(feat)$group),
verbose = TRUE

)

Arguments

feat The features object with the features to be grouped.
... Further parameters passed to the selected grouping algorithm.
rtalign Set to TRUE to enable retention time alignment.
loadRawData Set to TRUE if analyses are available as mzXML or mzML files. Otherwise MS data

is not loaded, and some dummy data (e.g. file paths) is used in the returned
object.

groupParam, retAlignParam
parameter object that is directly passed to xcms::groupChromPeaks and xcms::adjustRtime,
respectively.

preGroupParam grouping parameters applied when features are grouped prior to alignment (only
with peak groups alignment).

verbose if FALSE then no text output will be shown.

Details

This function uses XCMS3 to group features. This function is called when calling groupFeatures
with algorithm="xcms3".

Grouping of features and alignment of their retention times are performed with the xcms::groupChromPeaks
and xcms::adjustRtime functions, respectively. Both of these functions support an extensive
amount of parameters that modify their behavior and may therefore require optimization.

Value

An object of a class which is derived from featureGroups.

Sets workflows

loadRawData and arguments related to retention time alignment are currently not supported for sets
workflows.

References

Benton HP, Want EJ, Ebbels TMD (2010). “Correction of mass calibration gaps in liquid chromatography-
mass spectrometry metabolomics data.” BIOINFORMATICS, 26, 2488.

Smith, C.A., Want, E.J., O’Maille, G., Abagyan,R., Siuzdak, G. (2006). “XCMS: Processing mass
spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identifi-
cation.” Analytical Chemistry, 78, 779–787.

Tautenhahn R, Boettcher C, Neumann S (2008). “Highly sensitive feature detection for high reso-
lution LC/MS.” BMC Bioinformatics, 9, 504.

192 groupTable

See Also

groupFeatures for more details and other algorithms.

groupTable Base class for grouped features.

Description

This class holds all the information for grouped features.

Usage

groupTable(object, ...)

groupFeatIndex(fGroups)

groupInfo(fGroups)

unique(x, incomparables = FALSE, ...)

overlap(fGroups, which, exclusive = FALSE, ...)

selectIons(fGroups, components, prefAdduct, ...)

groupQualities(fGroups)

groupScores(fGroups)

internalStandards(fGroups)

internalStandardAssignments(fGroups, ...)

normInts(
fGroups,
featNorm = "none",
groupNorm = FALSE,
normFunc = max,
standards = NULL,
ISTDRTWindow = 120,
ISTDMZWindow = 300,
minISTDs = 3,
...

)

S4 method for signature 'featureGroups'
names(x)

groupTable 193

S4 method for signature 'featureGroups'
analyses(obj)

S4 method for signature 'featureGroups'
replicateGroups(obj)

S4 method for signature 'featureGroups'
groupNames(obj)

S4 method for signature 'featureGroups'
length(x)

S4 method for signature 'featureGroups'
show(object)

S4 method for signature 'featureGroups'
groupTable(object, areas = FALSE, normalized = FALSE)

S4 method for signature 'featureGroups'
analysisInfo(obj)

S4 method for signature 'featureGroups'
groupInfo(fGroups)

S4 method for signature 'featureGroups'
featureTable(obj)

S4 method for signature 'featureGroups'
getFeatures(obj)

S4 method for signature 'featureGroups'
groupFeatIndex(fGroups)

S4 method for signature 'featureGroups'
groupQualities(fGroups)

S4 method for signature 'featureGroups'
groupScores(fGroups)

S4 method for signature 'featureGroups'
annotations(obj)

S4 method for signature 'featureGroups'
internalStandards(fGroups)

S4 method for signature 'featureGroups'
internalStandardAssignments(fGroups)

194 groupTable

S4 method for signature 'featureGroups'
adducts(obj)

S4 replacement method for signature 'featureGroups'
adducts(obj) <- value

S4 method for signature 'featureGroups'
concentrations(fGroups)

S4 method for signature 'featureGroups'
toxicities(fGroups)

S4 method for signature 'featureGroups,ANY,ANY,missing'
x[i, j, ..., rGroups, results, drop = TRUE]

S4 method for signature 'featureGroups,ANY,ANY'
x[[i, j]]

S4 method for signature 'featureGroups'
x$name

S4 method for signature 'featureGroups'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'featureGroups'
export(obj, type, out)

S4 method for signature 'featureGroups'
as.data.table(
x,
average = FALSE,
areas = FALSE,
features = FALSE,
qualities = FALSE,
regression = FALSE,
averageFunc = mean,
normalized = FALSE,
FCParams = NULL,
concAggrParams = getDefPredAggrParams(),
toxAggrParams = getDefPredAggrParams(),
normConcToTox = FALSE

)

S4 method for signature 'featureGroups'
unique(x, which, relativeTo = NULL, outer = FALSE)

S4 method for signature 'featureGroups'

groupTable 195

overlap(fGroups, which, exclusive)

S4 method for signature 'featureGroups'
calculatePeakQualities(
obj,
weights,
flatnessFactor,
avgFunc = mean,
parallel = TRUE

)

S4 method for signature 'featureGroups'
selectIons(
fGroups,
components,
prefAdduct,
onlyMonoIso = TRUE,
chargeMismatch = "adduct"

)

S4 method for signature 'featureGroups'
normInts(
fGroups,
featNorm = "none",
groupNorm = FALSE,
normFunc = max,
standards = NULL,
ISTDRTWindow = 120,
ISTDMZWindow = 300,
minISTDs = 3,
...

)

S4 method for signature 'featureGroups'
getTICs(obj, retentionRange = NULL, MSLevel = c(1, 2))

S4 method for signature 'featureGroups'
getBPCs(obj, retentionRange = NULL, MSLevel = c(1, 2))

S4 method for signature 'featureGroupsSet'
sets(obj)

S4 method for signature 'featureGroupsSet'
internalStandardAssignments(fGroups, set = NULL)

S4 method for signature 'featureGroupsSet'
adducts(obj, set, ...)

196 groupTable

S4 replacement method for signature 'featureGroupsSet'
adducts(obj, set, reGroup = TRUE) <- value

S4 method for signature 'featureGroupsSet'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'featureGroupsSet'
show(object)

S4 method for signature 'featureGroupsSet'
featureTable(obj)

S4 method for signature 'featureGroupsSet,ANY,ANY,missing'
x[i, j, ..., rGroups, sets = NULL, drop = TRUE]

S4 method for signature 'featureGroupsSet'
export(obj, type, out, set)

S4 method for signature 'featureGroupsSet'
unique(x, which, ..., sets = FALSE)

S4 method for signature 'featureGroupsSet'
overlap(fGroups, which, exclusive, sets = FALSE)

S4 method for signature 'featureGroupsSet'
selectIons(fGroups, components, prefAdduct, ...)

S4 method for signature 'featureGroupsSet'
normInts(
fGroups,
featNorm = "none",
groupNorm = FALSE,
normFunc = max,
standards = NULL,
ISTDRTWindow = 120,
ISTDMZWindow = 300,
minISTDs = 3,
...

)

S4 method for signature 'featureGroupsSet'
unset(obj, set)

S4 method for signature 'featureGroupsKPIC2'
delete(obj, ...)

S4 method for signature 'featureGroups'
plotTICs(

groupTable 197

obj,
retentionRange = NULL,
MSLevel = 1,
retMin = FALSE,
title = NULL,
colourBy = c("none", "analyses", "rGroups"),
showLegend = TRUE,
xlim = NULL,
ylim = NULL,
...

)

S4 method for signature 'featureGroups'
plotBPCs(
obj,
retentionRange = NULL,
MSLevel = 1,
retMin = FALSE,
title = NULL,
colourBy = c("none", "analyses", "rGroups"),
showLegend = TRUE,
xlim = NULL,
ylim = NULL,
...

)

S4 method for signature 'featureGroupsXCMS'
delete(obj, ...)

S4 method for signature 'featureGroupsXCMS3'
delete(obj, ...)

Arguments

... For the "[" operator: ignored.
For delete: passed to the function specified as j.
For normInts: passed to screenSuspects if featNorm="istd".
For sets workflow methods: further arguments passed to the base featureGroups
method.

fGroups, obj, x, object
featureGroups object to be accessed.

incomparables Ignored.
which A character vector with replicate groups used for comparison.

For overlap: can also be a list of character vectors with replicate groups
to compare. For instance, which=list(c("samp1", "samp2"), c("samp3",
"samp4")) returns the overlap between "samp1"+"samp2" and "samp3"+"samp4".

exclusive If TRUE then all feature groups are removed that are not unique to the given
replicate groups.

198 groupTable

components The components object that was generated for the given featureGroups ob-
ject. Obviously, the components must be created with algorithms that support
adduct/isotope annotations, such as those from RAMClustR and cliqueMS.

prefAdduct The ’preferred adduct’ (see method description). This is often "[M+H]+" or
"[M-H]-".

featNorm The method applied for feature normalization: "istd", "tic", "conc" or "none".
See the Feature intensity normalization section for details.

groupNorm If TRUE then group normalization is performed. See the Feature intensity normalization
section for details.

normFunc A function to combine data for normalization. See the Feature intensity normalization
section for details.

standards A data.table (or data.frame) with all internal standards. Should follow the
format of a suspect list. Only used if featNorm="istd". See the Feature intensity
normalization section for details.

(sets workflow) Can also be a list with internal standard lists.
See the suspects argument to screenSuspects for more details.

ISTDRTWindow, ISTDMZWindow
The retention time and m/z windows for IS selection. Only used if featNorm="istd".
See the Feature intensity normalization section for details.

minISTDs The minimum number of IS that should be assigned to each feature (if possible).
Only used if featNorm="istd". See the Feature intensity normalization
section for details.

areas If set to TRUE then areas are considered instead of peak intensities.
For as.data.table: ignored if features=TRUE, as areas of features are always
reported.

normalized If TRUE then normalized intensity data is used (see the Feature intensity
normalization section.

For as.data.table: if no normalization data is available (e.g. because normInts
was not used) then an automatic group normalization is performed.

value For adducts<-: A character with adduct annotations assigned to each feature
group. The length should equal the number of feature groups. Can be named
with feature group names to customize the assignment order.

i, j For [/[[: A numeric or character value which is used to select analyses/feature
groups by their index or name, respectively (for the order/names see analyses()/names()).

For [: Can also be logical to perform logical selection (similar to regular vec-
tors). If missing all analyses/feature groups are selected.

For [[: should be a scalar value. If j is not specified, i selects by feature
groups instead.

For delete: The data to remove from. i are the analyses as numeric index,
logical or character, j the feature groups as numeric index, logical or character.
If either is NULL then data for all is removed. j may also be a function: it will be
called for each feature group, with a vector of the group intensities, the group

groupTable 199

name and any other arguments passed as ... to delete. The return value of this
function specifies the analyses of the features in the group to be removed (same
format as i).

rGroups For [: An optional character vector: if specified only keep results for the given
replicate groups (equivalent to the rGroups argument to filter).

results Optional argument. If specified only feature groups with results in the speci-
fied object are kept. The class of results should be featureAnnotations or
components. Multiple objects can be specified in a list: in this case a feature
group is kept if it has a result in any of the objects (equivalent to the results
argument to filter).

drop ignored.

name The feature group name (partially matched).

type The export type: "brukerpa" (Bruker ProfileAnalysis), "brukertasq" (Bruker
TASQ) or "mzmine" (MZmine).

out The destination file for the exported data.

average If TRUE then data within replicate groups are averaged.
For as.data.table: if features=TRUE other feature properties are also aver-
aged.

features If TRUE then feature specific data will be added. If average=TRUE this data will
be averaged for each feature group.

qualities Adds feature (group) qualities (qualities="quality"), scores (qualities="score")
or both (qualities="both"), if this data is available (i.e. from calculatePeakQualities).
If qualities=FALSE then nothing is reported.

regression Set to TRUE to add regression data for each feature group. For this a linear model
is created (intensity/area [depending on areas argument] vs concentration). The
model concentrations (e.g. of a set of standards) is derived from the conc col-
umn of the analysis information. From this model the intercept, slope and R2 is
added to the output. In addition, when features=TRUE, concentrations for each
feature are added. Note that no regression information is added when no conc
column is present in the analysis information or when less than two concentra-
tions are specified (i.e. the minimum amount).

averageFunc Function used for averaging. Only used when average=TRUE or FCParams !=
NULL.

FCParams A parameter list to calculate Fold change data. See getFCParams for more de-
tails. Set to NULL to not perform FC calculations.

concAggrParams, toxAggrParams
Parameters to aggregate calculated concentrations/toxicities (obtained with calculateConcs/calculateTox).
See prediction aggregation parameters for more information. Set to NULL to omit
this data.

normConcToTox Set to TRUE to normalize concentrations to toxicities. Only relevant if this data
is present (see calculateConcs/calculateTox).

relativeTo A character vector with replicate groups that should be used for unique compari-
son. If NULL then all replicate groups are used for comparison. Replicate groups
specified in which are ignored.

200 groupTable

outer If TRUE then only feature groups are kept which do not overlap between the
specified replicate groups for the which parameter.

weights A named numeric vector that defines the weight for each score to calculate
the totalScore. The names of the vector follow the score names. Unspecified
weights are defaulted to ‘1’. Example: weights=c(ApexBoundaryRatioScore=0.5,
GaussianSimilarityScore=2).

flatnessFactor Passed to MetaClean as the flatness.factor argument to calculateJaggedness
and calculateModality.

avgFunc The function used to average the peak qualities and scores for each feature
group.

parallel If set to TRUE then code is executed in parallel through the futures package.
Please see the parallelization section in the handbook for more details.

onlyMonoIso Set to TRUE to only keep feature groups that were annotated as monoisotopic.
Feature groups are never removed by this setting if no isotope annotations are
available.

chargeMismatch Specifies how to deal with a mismatch in charge between adduct and isotope an-
notations. Valid values are: "adduct" (ignore isotope annotation), "isotope"
(ignore adduct annotation), "none" (ignore both annotations) and "ignore"
(don’t check for charge mismatches). Important: when OpenMS is used to find
features, it already removes any detected non-monoisotopic features by default.
Hence, in such case setting chargeMismatch="adduct" is more appropriate.

retentionRange Range of retention time (in seconds) to collect TIC traces. Should be a numeric
vector with length of two containing the min/max values. Set to NULL to ignore.

MSLevel Integer vector with the ms levels (i.e., 1 for MS1 and 2 for MS2) to obtain TIC
traces.

set (sets workflow) The name of the set.
reGroup (sets workflow) Set to TRUE to re-group the features after the adduct annotations

are changed. See the Sets workflow section for more details.
sets (sets workflow) For [: a character with name(s) of the sets to keep.

For overlap and unique: If TRUE then the which argument changes its meaning
and is used to specify the names of the sets to be compared.

retMin Plot retention time in minutes (instead of seconds).
title Character string used for title of the plot. If NULL a title will be automatically

generated.
colourBy Sets the automatic colour selection: "none" for a single colour or "analyses"/"rGroups"

for a distinct colour per analysis or analysis replicate group.
showLegend Plot a legend if TRUE.
xlim, ylim Sets the plot size limits used by plot. Set to NULL for automatic plot sizing.

Details

The featureGroup class is the workhorse of patRoon: almost all functionality operate on its in-
stantiated objects. The class holds all information from grouped features (obtained from features).
This class itself is virtual, hence, objects are not created directly from it. Instead, ’feature
groupers’ such as groupFeaturesXCMS return a featureGroups derived object after performing
the actual grouping of features across analyses.

https://CRAN.R-project.org/package=futures

groupTable 201

Value

delete returns the object for which the specified data was removed.

calculatePeakQualities returns a modified object amended with peak qualities and scores.

selectIons returns a featureGroups object with only the selected feature groups and amended
with adduct annotations.

normInts returns a featureGroups object, amended with data in the ISTDs and ISTDAssignments
slots if featNorm="istd".

Methods (by generic)

• names(featureGroups): Obtain feature group names.

• analyses(featureGroups): returns a character vector with the names of the analyses for
which data is present in this object.

• replicateGroups(featureGroups): returns a character vector with the names of the repli-
cate groups for which data is present in this object.

• groupNames(featureGroups): Same as names. Provided for consistency to other classes.

• length(featureGroups): Obtain number of feature groups.

• show(featureGroups): Shows summary information for this object.

• groupTable(featureGroups): Accessor for groups slot.

• analysisInfo(featureGroups): Obtain analysisInfo (see analysisInfo slot in features).

• groupInfo(featureGroups): Accessor for groupInfo slot.

• featureTable(featureGroups): Obtain feature information (see features).

• getFeatures(featureGroups): Accessor for features slot.

• groupFeatIndex(featureGroups): Accessor for ftindex slot.

• groupQualities(featureGroups): Accessor for groupQualities slot.

• groupScores(featureGroups): Accessor for groupScores slot.

• annotations(featureGroups): Accessor for annotations slot.

• internalStandards(featureGroups): Accessor for ISTDs slot.

• internalStandardAssignments(featureGroups): Accessor for ISTDAssignments slot.

• adducts(featureGroups): Returns a named character with adduct annotations assigned to
each feature group (if available).

• adducts(featureGroups) <- value: Sets adduct annotations for feature groups.

• concentrations(featureGroups): Accessor for concentrations slot.

• toxicities(featureGroups): Accessor for toxicities slot.

• x[i: Subset on analyses/feature groups.

• x[[i: Extract intensity values.

• $: Extract intensity values for a feature group.

• delete(featureGroups): Completely deletes specified feature groups.

202 groupTable

• export(featureGroups): Exports feature groups to a ‘.csv’ file that is readable to Bruker
ProfileAnalysis (a ’bucket table’), Bruker TASQ (an analyte database) or that is suitable as
input for the Targeted peak
detection functionality of MZmine.

• as.data.table(featureGroups): Obtain a summary table (a data.table) with retention,
m/z, intensity and optionally other feature data.

• unique(featureGroups): Obtain a subset with unique feature groups present in one or more
specified replicate group(s).

• overlap(featureGroups): Obtain a subset with feature groups that overlap between a set of
specified replicate group(s).

• calculatePeakQualities(featureGroups): Calculates peak and group qualities for all
features and feature groups. The peak qualities (and scores) are calculated with the fea-
tures method of this function, and subsequently averaged per feature group. Then, Meta-
Clean is used to calculate the Elution Shift and Retention Time Consistency group
quality metrics (see the MetaClean publication cited below for more details). Similarly to
the features method, these metrics are scored by normalizing qualities among all groups
and scaling them from ‘0’ (worst) to ‘1’ (best). The totalScore for each group is then
calculated as the weighted sum from all feature (group) scores. The getMCTrainData and
predictCheckFeaturesSession functions can be used to train and apply Pass/Fail ML mod-
els from MetaClean.

• selectIons(featureGroups): uses componentization results to select feature groups with
preferred adduct ion and/or isotope annotation. Typically, this means that only feature groups
are kept if they are (de-)protonated adducts and are monoisotopic. The adduct annotation as-
signments for the selected feature groups are copied from the components to the annotations
slot. If the adduct for a feature group is unknown, its annotation is defaulted to the ’preferred’
adduct, and hence, the feature group will never be removed. Furthermore, if a component
does not contain an annotation with the preferred adduct, the most intense feature group is
selected instead. Similarly, if no isotope annotation is available, the feature group is assumed
to be monoisotopic and thus not removed. An important advantage of selectIons is that
it may considerably simplify your dataset. Furthermore, the adduct assignments allow for-
mula/compound annotation steps later in the workflow to improve their annotation accuracy.
On the other hand, it is important the componentization results are reliable. Hence, it is highly
recommended that, prior to calling selectIons, the settings to generateComponents are op-
timized and its results are reviewed with checkComponents. Finally, the adducts<- method
can be used to manually correct adduct assignments afterwards if necessary.

• normInts(featureGroups): Provides various methods to normalizes feature intensities for
each sample analysis or of all features within a feature group. See the Feature intensity normalization
section below.

• getTICs(featureGroups): Obtain the total ion chromatogram/s (TICs) of the analyses.
• getBPCs(featureGroups): Obtain the base peak chromatogram/s (BPCs) of the analyses.
• plotTICs(featureGroups): Plots the total ion chromatogram/s (TICs) of the analyses.
• plotBPCs(featureGroups): Plots the base peak chromatogram/s (BPCs) of the analyses.

Slots

groups Matrix (data.table) with intensities for each feature group (columns) per analysis (rows).
Access with groups method.

http://mzmine.github.io/

groupTable 203

analysisInfo,features Analysis info and features class associated with this object. Access
with analysisInfo and featureTable methods, respectively.

groupInfo data.frame with retention time (rts column, in seconds) and m/z (mzs column) for
each feature group. Access with groupInfo method.

ftindex Matrix (data.table) with feature indices for each feature group (columns) per analy-
sis (rows). Each index corresponds to the row within the feature table of the analysis (see
featureTable).

groupQualities,groupScores A data.table with qualities/scores for each feature group (see
the calculatePeakQualities method).

annotations A data.table with adduct annotations for each group (see the selectIons method).

ISTDs A data.table with screening results for internal standards (filled in by the normInts
method).

ISTDAssignments A list, where each item is named by a feature group and consists of a vector
with feature group names of the internal standards assigned to it (filled in by the normInts
method).

concentrations,toxicities A data.table with predicted concentrations/toxicities for each
feature group. Assigned by the calculateConcs/calculateTox methods. Use the concentratrions/toxicities
methods for access.

groupAlgo,groupArgs,groupVerbose (sets workflow) Grouping parameters that were used when
this object was created. Used by adducts<- and selectIons when these methods perform a
re-grouping of features.

annotations,ISTDAssignments (sets workflow) As the featureGroups slots, but contains the
data per set.

annotationsChanged Set internally by adducts()<- and applied as soon as reGroup=TRUE.

S4 class hierarchy

• workflowStep

– featureGroups

* featureGroupsSet

· featureGroupsScreeningSet

* featureGroupsUnset

* featureGroupsScreening

· featureGroupsSetScreeningUnset

* featureGroupsBruker

* featureGroupsConsensus

* featureGroupsEnviMass

* featureGroupsKPIC2

* featureGroupsOpenMS

* featureGroupsSIRIUS

* featureGroupsBrukerTASQ

* featureGroupsXCMS

* featureGroupsXCMS3

204 groupTable

Feature intensity normalization

The normInts method performs normalization of feature intensities (and areas). These values are
amended in the features slot, while the original intensities/areas are kept. To use the normalized
intensities set normalized=TRUE to methods such as plotInt, generateComponentsIntClust and
as.data.table. Please see the normalized argument documentation for these methods for more
details.

The normInts method supports several methods to normalize intensities/areas of features within the
same analysis. Most methods are influenced by the normalization concentration (norm_conc in the
analysis information) set for each sample analysis. For NA or zero values the output will be zero. If
the norm_conc is completely absent from the analysis information, the normalization concentration
is defaulted to one.

The different normalization methods are:

1. featNorm="istd" Uses internal standards (IS) for normalization. The IS are screened inter-
nally by the screenSuspects function. Hence, the IS specified by the standards argument
should follow the format of a suspect list. Note that labelled elements in IS formulae should be
specified with the rcdk format, e.g. "[13]C" for 13C, "[2]H" for a deuterium etc. Example
IS lists are provided with the patRoonData package.
The assignment of IS to features is automatically performed, using the following criteria:

(a) Only analyses are considered with a defined normalization concentration.
(b) The IS must be detected in all of the analyses in which the feature was detected.
(c) The retention time and m/z are reasonably close (ISTDRTWindow/ISTDMZWindow argu-

ments). However, additional IS candidates outside these windows will be chosen if the
number of candidates is less than the minISTDs argument. In this case the next close(st)
candidate(s) will be chosen.

Normalization of features within the same feature group always occur with the same IS. If
multiple IS are assigned to a feature then normalization occurs with the combined intensity
(area), which is calculated with the function defined by the normFunc argument. The (com-
bined) IS intensity is then normalized by the normalization concentration, and finally used for
feature normalization.

2. featNorm="tic" Uses the Total Ion Current (TIC) to normalize intensities. The TIC is cal-
culated by combining all intensities with the function defined by the normFunc argument. For
this reason, you may need to take care to perform normalization before e.g. suspect screening
or other prioritization techniques. The TIC normalized intensities are finally divided by the
normalization concentration.

3. featNorm="conc" Simply divides all intensities (areas) with the normalization concentration
defined for the sample.

4. featNorm="none" Performs no normalization. The raw intensity values are simply copied.
This is mainly useful if you only want to do group normalization (described below).

The meaning of the normalization concentration differs for each method: for "istd" it resembles
the IS concentration of a sample analysis, whereas for "tic" and "conc" it is used to normalize
different sample amounts (e.g. injection volume).

If groupNorm=TRUE then feature intensities (areas) will be normalized by the combined values for
its feature group (again, combination occurs with normFunc). This group normalization always

https://CRAN.R-project.org/package=rcdk

groupTable 205

occurs after aforementioned normalization methods. Group normalization was the only method
with patRoon ‘<2.1’, and still occurs automatically if normInts was not called when a method is
executed that requests normalized data.

Sets workflows

The featureGroupsSet class is applicable for sets workflows. This class is derived from featureGroups
and therefore largely follows the same user interface.

The following methods are specifically defined for sets workflows:

• sets Returns the set names for this object.

• unset Converts the object data for a specified set into a ’non-set’ object (featureGroupsUnset),
which allows it to be used in ’regular’ workflows. The adduct annotations for the selected set
are used to convert all feature (group) masses to ionic m/z values. The annotations persist in
the converted object.

The following methods are changed or with new functionality:

• adducts, adducts<- require the set argument. The order of the data that is returned/changed
follows that of the annotations slot. Furthermore, adducts<- will perform a re-grouping of
features when its reGroup parameter is set to TRUE. The implications for this are discussed
below. Note that no adducts are changed until reGroup=TRUE.

• the subset operator ([) has specific arguments to choose (feature presence in) sets. See the
argument descriptions.

• as.data.table: normalization of intensities is performed per set.

• export Only allows to export data from one set. The unset method is used prior to exporting
the data.

• overlap and unique allow to handle data per set. See the sets argument description.

• selectIons Will perform a re-grouping of features. The implications of this are discussed
below.

• normInts Performs normalization for each set independently.

A re-grouping of features occurs if selectIons is called or adducts<- is used with reGroup=TRUE.
Afterwards, it is very likely that feature group names are changed. Since data generated later in the
workflow (e.g. annotation steps) rely on feature group names, these objects are not valid anymore,
and must be re-generated.

Author(s)

Rick Helmus <<r.helmus@uva.nl>> and Ricardo Cunha <<cunha@iuta.de>> (getTICs and getBPCs
functions)

References

Chetnik K, Petrick L, Pandey G (2020). “MetaClean: a machine learning-based classifier for
reduced false positive peak detection in untargeted LC-MS metabolomics data.” Metabolomics,
16(11). doi:10.1007/s11306020017383.

https://doi.org/10.1007/s11306-020-01738-3

206 importFeatureGroups

See Also

groupFeatures for generating feature groups, feature-filtering and feature-plotting for more ad-
vanced featureGroups methods.

importFeatureGroups Import feature groups from files

Description

Generic function to import feature groups produced by other software from files.

Usage

importFeatureGroups(path, type, ...)

Arguments

path The path that should be used for importing. See the algorithm specific functions
for more details.

type Which file type should be imported: "brukerpa" (Bruker ProfileAnalysis), "brukertasq"
(Bruker TASQ) or "envimass" (enviMass).

... Further arguments passed to the selected import algorithm function.

Details

importFeatureGroups is a generic function that will import feature groups from files by one of the
supported algorithms. The actual functionality is provided by algorithm specific functions such as
importFeatureGroupsBrukerTASQ and importFeatureGroupsBrukerPA. While these functions
may be called directly, importFeatureGroups provides a generic interface and is therefore usually
preferred.

Value

An object of a class which is derived from featureGroups.

See Also

The featureGroups output class and its methods and the algorithm specific functions: importFeatureGroupsBrukerPA,
importFeatureGroupsBrukerTASQ, importFeatureGroupsEnviMass

groupFeatures to group features. Other import functions: importFeatureGroupsXCMS, importFeatureGroupsXCMS3
and importFeatureGroupsKPIC2.

importFeatureGroupsBrukerPA 207

importFeatureGroupsBrukerPA

Imports feature groups from Bruker ProfileAnalysis

Description

Imports a ’bucket table’ produced by Bruker ProfileAnalysis (PA)

Usage

importFeatureGroupsBrukerPA(
path,
feat,
rtWindow = 12,
mzWindow = 0.005,
intWindow = 5,
warn = TRUE

)

Arguments

path The file path to a exported ’bucket table’ ‘.txt’ file from PA.

feat The features object obtained with findFeaturesBruker.
rtWindow, mzWindow, intWindow

Search window values for retention time (seconds), m/z (Da) and intensity used
to find back features within feature groups from PA (+/- the retention/mass/intensity
value of a feature).

warn Warn about missing or duplicate features when relating them back from grouped
features.

Details

This function imports data from Bruker ProfileAnalysis. This function is called when calling
importFeatureGroups with type="brukerpa".

The ’bucket table’ should be exported as ‘.txt’ file. Please note that this function only supports
features generated by findFeaturesBruker and it is crucial that DataAnalysis files remain un-
changed when features are collected and the bucket table is generated. Furthermore, please note
that PA does not retain information about originating features for generated buckets. For this rea-
son, this function tries to find back the original features and care must be taken to correctly specify
search parameters (rtWindow, mzWindow, intWindow).

Value

An object of a class which is derived from featureGroups.

208 importFeatureGroupsBrukerTASQ

See Also

importFeatureGroups for more details and other algorithms.

importFeatureGroupsBrukerTASQ

Imports feature groups from Bruker TASQ

Description

Imports screening results from Bruker TASQ as feature groups.

Usage

importFeatureGroupsBrukerTASQ(path, analysisInfo, clusterRTWindow = 12)

Arguments

path The file path to an Excel export of the Global results table from TASQ, converted
to ‘.csv’ format.

analysisInfo A data.frame with Analysis information.
clusterRTWindow

This retention time window (in seconds) is used to group hits across analyses
together. See also the details section.

Details

This function imports data from Bruker TASQ. This function is called when calling importFeatureGroups
with type="brukertasq".

The feature groups across analyses are formed based on the name of suspects and their closeness
in retention time. The latter is necessary because TASQ does not necessarily perform checks on
retention times and may therefore assign a suspect to peaks with different retention times across
analyses (or within a single analysis). Hence, suspects with equal names are hierarchically clustered
on their retention times (using fastcluster) to form the feature groups. The cut-off value for this is
specified by the clusterRTWindow argument. The input for this function is obtained by generating
an Excel export of the ’global’ results and subsequently converting the file to ‘.csv’ format.

Value

A new featureGroups object containing converted screening results from Bruker TASQ.

Note

This function uses estimated min/max values for retention times and dummy min/max m/z values
for conversion to features, since this information is not (readily) available. Hence, when plotting,
for instance, extracted ion chromatograms (with plotChroms) the integrated chromatographic peak
range shown is incorrect.

This function may use suspect names to base file names used for reporting, logging etc. Therefore,
it is important that these are file-compatible names.

importFeatureGroupsEnviMass 209

References

Müllner D (2013). “fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and
Python.” Journal of Statistical Software, 53(9), 1–18. doi:10.18637/jss.v053.i09.

See Also

importFeatureGroups for more details and other algorithms.

importFeatureGroupsEnviMass

Imports feature groups from enviMass

Description

Imports a ’profiles’ produced by enviMass.

Usage

importFeatureGroupsEnviMass(path, feat, positive)

Arguments

path The path of the enviMass project.

feat The features object obtained with importFeaturesEnviMass.

positive Whether data from positive (TRUE) or negative (FALSE) should be loaded.

Details

This function imports data from enviMass. This function is called when calling importFeatureGroups
with type="envimass".

This function only imports ’raw’ profiles, not any results from further componentization steps per-
formed in enviMass. Furthermore, this functionality has only been tested with older versions of en-
viMass. Finally, please note that this function only supports features imported by importFeaturesEnviMass
(obviously, the same project should be used for both importing functions).

Value

An object of a class which is derived from featureGroups.

See Also

importFeatureGroups for more details and other algorithms.

https://doi.org/10.18637/jss.v053.i09

210 importFeatureGroupsXCMS

importFeatureGroupsKPIC2

Imports feature groups from KPIC2

Description

Imports grouped features from an KPIC object.

Usage

importFeatureGroupsKPIC2(picsSetGrouped, analysisInfo)

Arguments

picsSetGrouped A grouped PIC set object (e.g. as returned by KPIC::PICset.group).

analysisInfo A data.frame with Analysis information.

Value

An object of a class which is derived from featureGroups.

References

Ji H, Zeng F, Xu Y, Lu H, Zhang Z (2017). “KPIC2: An Effective Framework for Mass Spectrometry-
Based Metabolomics Using Pure Ion Chromatograms.” Analytical Chemistry, 89(14), 7631–7640.
doi:10.1021/acs.analchem.7b01547.

See Also

groupFeatures

importFeatureGroupsXCMS

Imports feature groups from XCMS (old interface)

Description

Imports grouped features from a legacy xcmsSet object from the xcms package.

Usage

importFeatureGroupsXCMS(xs, analysisInfo)

https://doi.org/10.1021/acs.analchem.7b01547

importFeatureGroupsXCMS3 211

Arguments

xs An xcmsSet object.

analysisInfo A data.frame with Analysis information.

Value

An object of a class which is derived from featureGroups.

References

Benton HP, Want EJ, Ebbels TMD (2010). “Correction of mass calibration gaps in liquid chromatography-
mass spectrometry metabolomics data.” BIOINFORMATICS, 26, 2488.

Smith, C.A., Want, E.J., O’Maille, G., Abagyan,R., Siuzdak, G. (2006). “XCMS: Processing mass
spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identifi-
cation.” Analytical Chemistry, 78, 779–787.

Tautenhahn R, Boettcher C, Neumann S (2008). “Highly sensitive feature detection for high reso-
lution LC/MS.” BMC Bioinformatics, 9, 504.

See Also

importFeaturesXCMS3 and groupFeatures

importFeatureGroupsXCMS3

Imports feature groups from XCMS (new interface)

Description

Imports grouped features from a XCMSnExp object from the xcms package.

Usage

importFeatureGroupsXCMS3(xdata, analysisInfo)

Arguments

xdata An XCMSnExp object.

analysisInfo A data.frame with Analysis information.

Value

An object of a class which is derived from featureGroups.

212 importFeatures

References

Benton HP, Want EJ, Ebbels TMD (2010). “Correction of mass calibration gaps in liquid chromatography-
mass spectrometry metabolomics data.” BIOINFORMATICS, 26, 2488.

Smith, C.A., Want, E.J., O’Maille, G., Abagyan,R., Siuzdak, G. (2006). “XCMS: Processing mass
spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identifi-
cation.” Analytical Chemistry, 78, 779–787.

Tautenhahn R, Boettcher C, Neumann S (2008). “Highly sensitive feature detection for high reso-
lution LC/MS.” BMC Bioinformatics, 9, 504.

See Also

groupFeatures

importFeatures Import features

Description

Generic function to import features produced by other software.

Usage

importFeatures(analysisInfo, type, ...)

Arguments

analysisInfo A data.frame with Analysis information.
type What type of data should be imported: "xcms", "xcms3", "kpic2" or "envimass".
... Further arguments passed to the selected import algorithm function.

Details

importFeatures is a generic function that will import features by one of the supported algorithms.
The actual functionality is provided by algorithm specific functions such as importFeaturesXCMS3
and importFeaturesKPIC2. While these functions may be called directly, importFeatures pro-
vides a generic interface and is therefore usually preferred.

Value

An object of a class which is derived from features.

See Also

The features output class and its methods and the algorithm specific functions: importFeaturesXCMS,
importFeaturesXCMS3, importFeaturesKPIC2, importFeaturesEnviMass

findFeatures to find new features.

importFeaturesEnviMass 213

importFeaturesEnviMass

Imports features from enviMass

Description

Imports features from a project generated by the enviMass package.

Usage

importFeaturesEnviMass(analysisInfo, enviProjPath)

Arguments

analysisInfo A data.frame with Analysis information.

enviProjPath The path of the enviMass project.

Details

This function imports data from enviMass. This function is called when calling importFeatures
with type="envimass".

Value

An object of a class which is derived from features.

Note

This functionality has only been tested with older versions of enviMass.

See Also

importFeatures for more details and other algorithms.

importFeaturesKPIC2 Imports features from KPIC2

Description

Imports feature data generated by the KPIC2 package.

Usage

importFeaturesKPIC2(picsList, analysisInfo)

214 importFeaturesXCMS

Arguments

picsList A list with a pics objects obtained with getPIC or getPIC.kmeans for each
analysis.

analysisInfo A data.frame with Analysis information.

Details

This function imports data from KPIC2. This function is called when calling importFeatures with
type="kpic2".

Value

An object of a class which is derived from features.

References

Ji H, Zeng F, Xu Y, Lu H, Zhang Z (2017). “KPIC2: An Effective Framework for Mass Spectrometry-
Based Metabolomics Using Pure Ion Chromatograms.” Analytical Chemistry, 89(14), 7631–7640.
doi:10.1021/acs.analchem.7b01547.

See Also

importFeatures for more details and other algorithms.

importFeaturesXCMS Imports features from XCMS (old interface)

Description

Imports feature data generated with the legacy xcmsSet function from the xcms package.

Usage

importFeaturesXCMS(xs, analysisInfo)

Arguments

xs An xcmsSet object.

analysisInfo A data.frame with Analysis information.

Details

This function imports data from XCMS. This function is called when calling importFeatures with
type="xcms".

Value

An object of a class which is derived from features.

https://doi.org/10.1021/acs.analchem.7b01547

importFeaturesXCMS3 215

References

Benton HP, Want EJ, Ebbels TMD (2010). “Correction of mass calibration gaps in liquid chromatography-
mass spectrometry metabolomics data.” BIOINFORMATICS, 26, 2488.

Smith, C.A., Want, E.J., O’Maille, G., Abagyan,R., Siuzdak, G. (2006). “XCMS: Processing mass
spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identifi-
cation.” Analytical Chemistry, 78, 779–787.

Tautenhahn R, Boettcher C, Neumann S (2008). “Highly sensitive feature detection for high reso-
lution LC/MS.” BMC Bioinformatics, 9, 504.

See Also

importFeatures for more details and other algorithms.

importFeaturesXCMS3

importFeaturesXCMS3 Imports features from XCMS (new interface)

Description

Imports feature data generated from an existing XCMSnExp object generated by the xcms package.

Usage

importFeaturesXCMS3(xdata, analysisInfo)

Arguments

xdata An XCMSnExp object.

analysisInfo A data.frame with Analysis information.

Details

This function imports data from XCMS3. This function is called when calling importFeatures
with type="xcms3".

Value

An object of a class which is derived from features.

216 loadMSLibrary

References

Benton HP, Want EJ, Ebbels TMD (2010). “Correction of mass calibration gaps in liquid chromatography-
mass spectrometry metabolomics data.” BIOINFORMATICS, 26, 2488.

Smith, C.A., Want, E.J., O’Maille, G., Abagyan,R., Siuzdak, G. (2006). “XCMS: Processing mass
spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identifi-
cation.” Analytical Chemistry, 78, 779–787.

Tautenhahn R, Boettcher C, Neumann S (2008). “Highly sensitive feature detection for high reso-
lution LC/MS.” BMC Bioinformatics, 9, 504.

See Also

importFeatures for more details and other algorithms.

loadMSLibrary Loading of MS library data

Description

Loads, parses, verifies and curates MS library data, e.g. obtained from MassBank.

Usage

loadMSLibrary(file, algorithm, ...)

Arguments

file A character string that specifies the the file path to the library.

algorithm A character string describing the algorithm that should be used: "msp", "json"

... Any parameters to be passed to the selected MS library loading algorithm.

Details

loadMSLibrary is a generic function that will loads MS library data by one of the supported algo-
rithms. The actual functionality is provided by algorithm specific functions such as loadMSLibraryMSP
and loadMSLibraryMoNAJSON. While these functions may be called directly, loadMSLibrary pro-
vides a generic interface and is therefore usually preferred.

Value

A MSLibrary object containing the loaded library data.

See Also

The MSLibrary output class and its methods and the algorithm specific functions: loadMSLibraryMSP,
loadMSLibraryMoNAJSON

loadMSLibraryMoNAJSON 217

loadMSLibraryMoNAJSON Load MS library data from MassBank of North America (MONA)

Description

This function loads, verifies and curates MS library data from MoNA ‘.json’ files.

Usage

loadMSLibraryMoNAJSON(
file,
prefCalcChemProps = TRUE,
neutralChemProps = FALSE,
potAdducts = TRUE,
potAdductsLib = TRUE,
absMzDev = 0.002,
calcSPLASH = TRUE

)

Arguments

file A character string that specifies the file path to the JSON library.
prefCalcChemProps

If TRUE then calculated chemical properties such as the formula and INCHIKEY
are preferred over what is already present in the MS library. For efficiency rea-
sons it is recommended to set this to TRUE. See the Validating and calculating chemical properties
section for more details.

neutralChemProps

If TRUE then the neutral form of the molecule is considered to calculate SMILES,
formulae etc. Enabling this may improve feature matching when considering
common adducts (e.g. [M+H]+, [M-H]-). See the Validating and calculating chemical properties
section for more details.

potAdducts, potAdductsLib
If and how missing adducts (Precursor_type data) are guessed, potAdducts
should be either:

• FALSE: do not perform adduct guessing.
• TRUE: guesses adducts based on a common set of known adducts (currently

based on GenFormAdducts and MetFragAdducts). If potAdductsLib is
TRUE then also any adducts specified in the library are used.

• A list with adduct objects or character vector that can be converted
with as.adduct. Only the specified adducts will be used for guessing miss-
ing values.

absMzDev The maximum absolute m/z deviation when guessing missing adducts.

calcSPLASH If set to TRUE then missing SPLASH values will be calculated (see below).

https://mona.fiehnlab.ucdavis.edu/

218 loadMSLibraryMoNAJSON

Details

This function uses an efficient C++ JSON loader to load MS library data. This function is called
when calling loadMSLibrary with algorithm="json".

This function uses C++ with Rcpp and rapidjsonr to efficiently load and parse JSON files from
MoNA. An advantage compared to loadMSLibraryMSP is that this function supports loading spec-
tral annotations.

The record field names are converted to those used in ‘.msp’ files.

Value

The loaded data is returned in an MSLibrary object.

Automatic curation of library data

Several strategies are applied to automatically verify and improve library data. This is important,
since library records may have inconsistent or erroneous data, which makes them unsuitable in
automated workflows such as compounds annotation with generateCompoundsLibrary.

The loaded library data is post-treated as follows:

• The DB# field is renamed to DB_ID to improve compatibility with R column names.

• Synonyms (Synon fields) are merged together, mainly to save memory usage.

• Inconsistently formatted NA data (e.g. "n/a", "N/A" or empty strings) are set to regular R NA
values.

• The case of record field names are made consistent.

• The Formula and ExactMass fields are renamed to formula and neutralMass, respectively.
This is for consistency with other data generated with patRoon.

• character field data is trimmed from leading/trailing whitespace.

• Mass data is verified to be properly numeric, and set to NA otherwise.

• The format of formulae data is made consistent: ionic species (with or without square brack-
ets) or converted to a regular formula format.

• Chemical identifiers such as SMILES and formulae are verified and missing values are calcu-
lated if possible. See below for more details.

• Shortened data in the Ion_mode field (P/N) is converted to the long format (POSITIVE/NEGATIVE).

• Many different adduct flavors typically found as Precursor_type data are converted and
normalized to the generic textual format used by patRoon (see as.adduct).

• If potAdducts!=FALSE then missing or invalid adduct data in Precursor_type is guessed
based on the difference between the neutral and ionic mass. If multiple adducts explain the
mass difference the result is NA.

• Missing ion m/z data (PrecursorMZ field) is calculated from adduct data, if possible.

• Missing SPLASH data is calculated with the splashR package if calcSPLASH=TRUE.

https://CRAN.R-project.org/package=Rcpp
https://CRAN.R-project.org/package=rapidjsonr
https://mona.fiehnlab.ucdavis.edu/
https://splash.fiehnlab.ucdavis.edu/

loadMSLibraryMoNAJSON 219

Validating and calculating chemical properties

Chemical properties such as SMILES, INCHIKEY and formula in the MS library are automatically
validated and calculated if missing/invalid.

The internal validation/calculation process performs the following steps:

• Validation of SMILES, INCHI, INCHIKEY and formula data (if present). Invalid entries will be
set to NA.

• If neutralChemProps=TRUE then chemical data (SMILES, formulae etc.) is neutralized by
(de-)protonation (using the --neutralized option of OpenBabel). An additional column
molNeutralized is added to mark those molecules that were neutralized. Note that neutral-
ization requires either SMILES or INCHI data to be available.

• The SMILES and INCHI data are used to calculate missing or invalid SMILES, INCHI, INCHIKEY
and formula data. If prefCalcChemProps=TRUE then existing INCHIKEY and formula data is
overwritten by calculated values whenever possible.

• The chemical formulae which were not calculated are verified and normalized. This process
may be time consuming, and is potentially largely avoided by setting prefCalcChemProps=TRUE.

• Neutral masses are calculated for missing values (prefCalcChemProps=FALSE) or whenever
possible (prefCalcChemProps=TRUE).

Note that calculation of formulae for molecules that are isotopically labelled is currently only sup-
ported for deuterium (2H) elements.

This functionality relies heavily on OpenBabel, please make sure it is installed.

Source

Guessing adducts from neutral/ionic mass differences was inspired from MetFrag.

References

Wohlgemuth G, Mehta SS, Mejia RF, Neumann S, Pedrosa D, Pluskal T, Schymanski EL, Willigha-
gen EL, Wilson M, Wishart DS, Arita M, Dorrestein PC, Bandeira N, Wang M, Schulze T, Salek
RM, Steinbeck C, Nainala VC, Mistrik R, Nishioka T, Fiehn O (2016). “SPLASH, a hashed identi-
fier for mass spectra.” Nature Biotechnology, 34(11), 1099–1101. doi:10.1038/nbt.3689.

Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016). “MetFrag relaunched: incor-
porating strategies beyond in silico fragmentation.” Journal of Cheminformatics, 8(1). doi:10.1186/
s1332101601159.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer, New York. doi:10.1007/
9781461468684, ISBN 978-1-4614-6867-7.

Eddelbuettel D, Balamuta J (2018). “Extending R with C++: A Brief Introduction to Rcpp.” The
American Statistician, 72(1), 28-36. doi:10.1080/00031305.2017.1375990.

Eddelbuettel D, Francois R, Allaire J, Ushey K, Kou Q, Russell N, Ucar I, Bates D, Chambers J
(2025). Rcpp: Seamless R and C++ Integration. R package version 1.0.14, https://dirk.eddelbuettel.com/code/rcpp.html,
https://github.com/RcppCore/Rcpp, https://www.rcpp.org.

https://github.com/openbabel/openbabel
http://ipb-halle.github.io/MetFrag/
https://doi.org/10.1038/nbt.3689
https://doi.org/10.1186/s13321-016-0115-9
https://doi.org/10.1186/s13321-016-0115-9
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1080/00031305.2017.1375990
https://www.rcpp.org

220 loadMSLibraryMSP

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of Statistical
Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

OBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011). “Open
Babel: An open chemical toolbox.” Journal of Cheminformatics, 3(1). doi:10.1186/17582946333.

See Also

loadMSLibrary for more details and other algorithms.

The MSLibrary documentation for various methods to post-process the data and generateCompoundsLibrary
for annotation of features with the library data.

loadMSLibraryMSP Load MS library data from MSP files

Description

This function loads, verifies and curates MS library data from MSP files.

Usage

loadMSLibraryMSP(
file,
parseComments = TRUE,
prefCalcChemProps = TRUE,
neutralChemProps = FALSE,
potAdducts = TRUE,
potAdductsLib = TRUE,
absMzDev = 0.002,
calcSPLASH = TRUE

)

Arguments

file A character string that specifies the file path to the MSP library.

parseComments If TRUE then comments in the file are parsed to obtain additional fields, such as
SMILES, PubChemCID and Resolution. Note that some records specify this data
either in the comments or as a regular field, hence, to ensure that loaded data is
most complete it is recommend to set parseComments=TRUE.

prefCalcChemProps

If TRUE then calculated chemical properties such as the formula and INCHIKEY
are preferred over what is already present in the MS library. For efficiency rea-
sons it is recommended to set this to TRUE. See the Validating and calculating chemical properties
section for more details.

https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1186/1758-2946-3-33

loadMSLibraryMSP 221

neutralChemProps

If TRUE then the neutral form of the molecule is considered to calculate SMILES,
formulae etc. Enabling this may improve feature matching when considering
common adducts (e.g. [M+H]+, [M-H]-). See the Validating and calculating chemical properties
section for more details.

potAdducts, potAdductsLib
If and how missing adducts (Precursor_type data) are guessed, potAdducts
should be either:

• FALSE: do not perform adduct guessing.
• TRUE: guesses adducts based on a common set of known adducts (currently

based on GenFormAdducts and MetFragAdducts). If potAdductsLib is
TRUE then also any adducts specified in the library are used.

• A list with adduct objects or character vector that can be converted
with as.adduct. Only the specified adducts will be used for guessing miss-
ing values.

absMzDev The maximum absolute m/z deviation when guessing missing adducts.

calcSPLASH If set to TRUE then missing SPLASH values will be calculated (see below).

Details

This function uses an efficient C++ MSP loader to load MS library data. This function is called
when calling loadMSLibrary with algorithm="msp".

This function uses C++ with Rcpp to efficiently load and parse MSP files, and is mainly optimized
for loading the ‘.msp’ files from MassBank EU and MoNA. Files from other sources may also work,
any feedback on this is welcome!

Value

The loaded data is returned in an MSLibrary object.

Automatic curation of library data

Several strategies are applied to automatically verify and improve library data. This is important,
since library records may have inconsistent or erroneous data, which makes them unsuitable in
automated workflows such as compounds annotation with generateCompoundsLibrary.

The loaded library data is post-treated as follows:

• The DB# field is renamed to DB_ID to improve compatibility with R column names.

• Synonyms (Synon fields) are merged together, mainly to save memory usage.

• Inconsistently formatted NA data (e.g. "n/a", "N/A" or empty strings) are set to regular R NA
values.

• The case of record field names are made consistent.

• The Formula and ExactMass fields are renamed to formula and neutralMass, respectively.
This is for consistency with other data generated with patRoon.

• character field data is trimmed from leading/trailing whitespace.

• Mass data is verified to be properly numeric, and set to NA otherwise.

https://CRAN.R-project.org/package=Rcpp
https://massbank.eu/MassBank/
https://mona.fiehnlab.ucdavis.edu/

222 loadMSLibraryMSP

• The format of formulae data is made consistent: ionic species (with or without square brack-
ets) or converted to a regular formula format.

• Chemical identifiers such as SMILES and formulae are verified and missing values are calcu-
lated if possible. See below for more details.

• Shortened data in the Ion_mode field (P/N) is converted to the long format (POSITIVE/NEGATIVE).

• Many different adduct flavors typically found as Precursor_type data are converted and
normalized to the generic textual format used by patRoon (see as.adduct).

• If potAdducts!=FALSE then missing or invalid adduct data in Precursor_type is guessed
based on the difference between the neutral and ionic mass. If multiple adducts explain the
mass difference the result is NA.

• Missing ion m/z data (PrecursorMZ field) is calculated from adduct data, if possible.

• Missing SPLASH data is calculated with the splashR package if calcSPLASH=TRUE.

Validating and calculating chemical properties

Chemical properties such as SMILES, INCHIKEY and formula in the MS library are automatically
validated and calculated if missing/invalid.

The internal validation/calculation process performs the following steps:

• Validation of SMILES, INCHI, INCHIKEY and formula data (if present). Invalid entries will be
set to NA.

• If neutralChemProps=TRUE then chemical data (SMILES, formulae etc.) is neutralized by
(de-)protonation (using the --neutralized option of OpenBabel). An additional column
molNeutralized is added to mark those molecules that were neutralized. Note that neutral-
ization requires either SMILES or INCHI data to be available.

• The SMILES and INCHI data are used to calculate missing or invalid SMILES, INCHI, INCHIKEY
and formula data. If prefCalcChemProps=TRUE then existing INCHIKEY and formula data is
overwritten by calculated values whenever possible.

• The chemical formulae which were not calculated are verified and normalized. This process
may be time consuming, and is potentially largely avoided by setting prefCalcChemProps=TRUE.

• Neutral masses are calculated for missing values (prefCalcChemProps=FALSE) or whenever
possible (prefCalcChemProps=TRUE).

Note that calculation of formulae for molecules that are isotopically labelled is currently only sup-
ported for deuterium (2H) elements.

This functionality relies heavily on OpenBabel, please make sure it is installed.

Note

The mass spectrum parser currently only supports space separated entries (MSP formerly also al-
lows other formats).

Source

Guessing adducts from neutral/ionic mass differences was inspired from MetFrag.

https://splash.fiehnlab.ucdavis.edu/
https://github.com/openbabel/openbabel
http://ipb-halle.github.io/MetFrag/

makeHCluster 223

References

Wohlgemuth G, Mehta SS, Mejia RF, Neumann S, Pedrosa D, Pluskal T, Schymanski EL, Willigha-
gen EL, Wilson M, Wishart DS, Arita M, Dorrestein PC, Bandeira N, Wang M, Schulze T, Salek
RM, Steinbeck C, Nainala VC, Mistrik R, Nishioka T, Fiehn O (2016). “SPLASH, a hashed identi-
fier for mass spectra.” Nature Biotechnology, 34(11), 1099–1101. doi:10.1038/nbt.3689.

Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016). “MetFrag relaunched: incor-
porating strategies beyond in silico fragmentation.” Journal of Cheminformatics, 8(1). doi:10.1186/
s1332101601159.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer, New York. doi:10.1007/
9781461468684, ISBN 978-1-4614-6867-7.

Eddelbuettel D, Balamuta J (2018). “Extending R with C++: A Brief Introduction to Rcpp.” The
American Statistician, 72(1), 28-36. doi:10.1080/00031305.2017.1375990.

Eddelbuettel D, Francois R, Allaire J, Ushey K, Kou Q, Russell N, Ucar I, Bates D, Chambers J
(2025). Rcpp: Seamless R and C++ Integration. R package version 1.0.14, https://dirk.eddelbuettel.com/code/rcpp.html,
https://github.com/RcppCore/Rcpp, https://www.rcpp.org.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of Statistical
Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

OBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011). “Open
Babel: An open chemical toolbox.” Journal of Cheminformatics, 3(1). doi:10.1186/17582946333.

See Also

loadMSLibrary for more details and other algorithms.

The MSLibrary documentation for various methods to post-process the data and generateCompoundsLibrary
for annotation of features with the library data.

makeHCluster Hierarchical clustering of compounds

Description

Perform hierarchical clustering of structure candidates based on chemical similarity and obtain
overall structural information based on the maximum common structure (MCS).

Usage

makeHCluster(obj, method = "complete", ...)

S4 method for signature 'compounds'
makeHCluster(

obj,

https://doi.org/10.1038/nbt.3689
https://doi.org/10.1186/s13321-016-0115-9
https://doi.org/10.1186/s13321-016-0115-9
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1080/00031305.2017.1375990
https://www.rcpp.org
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1186/1758-2946-3-33

224 makeHCluster

method,
fpType = "extended",
fpSimMethod = "tanimoto",
maxTreeHeight = 1,
deepSplit = TRUE,
minModuleSize = 1

)

Arguments

obj The compounds object to be clustered.
method The clustering method passed to hclust.
... further arguments specified to methods.
fpType The type of structural fingerprint that should be calculated. See the type argu-

ment of the get.fingerprint function of rcdk.
fpSimMethod The method for calculating similarities (i.e. not dissimilarity!). See the method

argument of the fp.sim.matrix function of the fingerprint package.
maxTreeHeight, deepSplit, minModuleSize

Arguments used by cutreeDynamicTree.

Details

Often many possible chemical structure candidates are found for each feature group when per-
forming compound annotation. Therefore, it may be useful to obtain an overview of their general
structural properties. One strategy is to perform hierarchical clustering based on their chemical
(dis)similarity, for instance, using the Tanimoto score. The resulting clusters can then be character-
ized by evaluating their maximum common substructure (MCS).
makeHCluster performs hierarchical clustering of all structure candidates for each feature group
within a compounds object. The resulting dendrograms are automatically cut using the cutreeDynamicTree
function from the dynamicTreeCut package. The returned compoundsCluster object can then be
used, for instance, for plotting dendrograms and MCS structures and manually re-cutting specific
clusters.

Value

makeHCluster returns an compoundsCluster object.

Source

The methodology applied here has been largely derived from ‘chemclust.R’ from the metfRag
package and the package vignette of rcdk.

References

Guha R (2007). “Chemical Informatics Functionality in R.” Journal of Statistical Software, 18(6).

See Also

compoundsCluster

https://CRAN.R-project.org/package=rcdk
https://CRAN.R-project.org/package=fingerprint
https://CRAN.R-project.org/package=rcdk

makeSet 225

makeSet Initiate sets workflows

Description

Initiate sets workflows from specified feature data.

Usage

makeSet(obj, ...)

S4 method for signature 'features'
makeSet(obj, ..., adducts, labels = NULL)

S4 method for signature 'featuresSet'
makeSet(obj, ...)

S4 method for signature 'featureGroups'
makeSet(

obj,
...,
groupAlgo,
groupArgs = NULL,
verbose = TRUE,
adducts = NULL,
labels = NULL

)

S4 method for signature 'featureGroupsSet'
makeSet(obj, ...)

Arguments

obj, ... features or featureGroups objects that should be used for the sets workflow.
adducts The adduct assignments to each set. Should either be a list with adduct objects

or a character vector (e.g. "[M+H]+"). The order should follow that of the
objects given to the obj and ... arguments.
For the featureGroups method: if NULL then adduct annotations are used.

labels The labels, or set names, for each set to be created. The order should follow
that of the objects given to the obj and ... arguments. If NULL, then labels are
automatically generated from the polarity of the specified adducts argument
(e.g. "positive", "negative").

groupAlgo groupAlgo The name of the feature grouping algorithm. See the algorithm
argument of groupFeatures for details.

groupArgs A list with arguments directly passed to groupFeatures (can be named). Ex-
ample: groupArgs=list(maxAlignMZ=0.002).

verbose If set to FALSE then no text output is shown.

226 newProject

Details

The makeSet method function is used to initiate a sets workflow. The features from input objects
are combined and then neutralized by replacing their m/z values by neutral monoisotopic masses.
After neutralization features measured with e.g. different ionization polarities can be grouped since
their neutral mass will be the same.

The analysis information for this object is updated with all analyses, and a set column is added to
designate the set of each analysis. Note that currently, all analyses names must be unique across
different sets.

makeSet supports two types of input:

1. features objects: makeSet combines the input objects into a featuresSet object, which is
then grouped in the ’usual way’ with groupFeatures.

2. featureGroups objects: In this case the features from the input objects are first neutralized
and feature groups between sets are then combined with groupFeatures.

The advantage of the featureGroups method is that it preserves any adduct annotations already
present (e.g. as set by selectIons or adducts<-). Furthermore, this approach allows more ad-
vanced workflows where the input featureGroups are first pre-treated with e.g. filter before the
sets object is made. On the other hand, the features method is easier, as it doesn’t require interme-
diate feature grouping steps and is often sufficient since adduct annotations can be made afterwards
with selectIons/adducts<- and most filter operations do not need to be done per individual
set.

The adduct information used for feature neutralization is specified through the adducts argument.
Alternatively, when the featureGroups method of makeSet is used, then the adduct annotations
already present in the input objects can also by used by setting adducts=NULL. The adduct infor-
mation is also used to add adduct annotations to the output of makeSet.

Value

Either a featuresSet object (features method) or featureGroupsSet object (featureGroups
method).

Note

Initiating a sets workflow recursively, i.e. with featuresSet or featureGroupsSet objects as
input, is currently not supported.

newProject Easily create new patRoon projects

Description

The newProject function is used to quickly generate a processing R script. This tool allows the
user to quickly select the targeted analyses, workflow steps and configuring some of their common
parameters. This function requires to be run within a RStudio session. The resulting script is either
added to the current open file or to a new file. The analysis information will be written to a ‘.csv’
file so that it can easily be modified afterwards.

https://www.rstudio.com/

optimizedParameters 227

Usage

newProject(destPath = NULL)

Arguments

destPath Set destination path value to this value (useful for debugging). Set to NULL for a
default value.

optimizedParameters Class containing optimization results.

Description

Objects from this class contain optimization results resulting from design of experiment (DoE).

Usage

optimizedParameters(object, paramSet = NULL, DoEIteration = NULL)

optimizedObject(object, paramSet = NULL)

scores(object, paramSet = NULL, DoEIteration = NULL)

experimentInfo(object, paramSet, DoEIteration)

S4 method for signature 'optimizationResult'
algorithm(obj)

S4 method for signature 'optimizationResult'
length(x)

S4 method for signature 'optimizationResult'
lengths(x, use.names = FALSE)

S4 method for signature 'optimizationResult'
show(object)

S4 method for signature 'optimizationResult,missing'
plot(

x,
paramSet,
DoEIteration,
paramsToPlot = NULL,
maxCols = NULL,
type = "contour",
image = TRUE,
contours = "colors",

228 optimizedParameters

...
)

S4 method for signature 'optimizationResult'
optimizedParameters(object, paramSet = NULL, DoEIteration = NULL)

S4 method for signature 'optimizationResult'
optimizedObject(object, paramSet = NULL)

S4 method for signature 'optimizationResult'
scores(object, paramSet = NULL, DoEIteration = NULL)

S4 method for signature 'optimizationResult'
experimentInfo(object, paramSet, DoEIteration)

Arguments

paramSet Numeric index of the parameter set (i.e. the first parameter set gets index ‘1’).
For some methods optional: if NULL the best will be selected.

DoEIteration Numeric index specifying the DoE iteration within the specified paramSet. For
some methods optional: if NULL the best will be selected.

obj, x, object An optimizationResult object.

use.names Ignored.

paramsToPlot Which parameters relations should be plot. If NULL all will be plot. Alterna-
tively, a list containing one or more character vectors specifying each two
parameters that should be plotted. Finally, if only one pair should be plotted,
can be a character vector specifying both parameters.

maxCols Multiple parameter pairs are plotted in a grid. The maximum number of columns
can be set with this argument. Set to NULL for no limit.

type The type of plots to be generated: "contour", "image" or "persp". The equally
named functions will be called for plotting.

image Passed to contour (if type="contour").

contours Passed to persp (if type="persp").

... Further arguments passed to contour, image or persp (depending on type).

Details

Objects from this class are returned by optimizeFeatureFinding and optimizeFeatureGrouping.

Methods (by generic)

• algorithm(optimizationResult): Returns the algorithm that was used for finding features.

• length(optimizationResult): Obtain total number of experimental design iterations per-
formed.

• lengths(optimizationResult): Obtain number of experimental design iterations performed
for each parameter set.

parents 229

• show(optimizationResult): Shows summary information for this object.

• plot(x = optimizationResult, y = missing): Generates response plots for all or a selected
set of parameters.

• optimizedParameters(optimizationResult): Returns parameter set yielding optimal re-
sults. The paramSet and DoEIteration arguments can be NULL.

• optimizedObject(optimizationResult): Returns the object (i.e. a features or featureGroups
object) that was generated with optimized parameters. The paramSet argument can be NULL.

• scores(optimizationResult): Returns optimization scores. The paramSet and DoEIteration
arguments can be NULL.

• experimentInfo(optimizationResult): Returns a list with optimization information from
an DoE iteration.

Slots

algorithm A character specifying the algorithm that was optimized.

paramSets A list with detailed results from each parameter set that was tested.

bestParamSet Numeric index of the parameter set yielding the best response.

Examples

Not run:
ftOpt is an optimization object.

plot contour of all parameter pairs from the first parameter set/iteration.
plot(ftOpt, paramSet = 1, DoEIteration = 1)

as above, but only plot two parameter pairs
plot(ftOpt, paramSet = 1, DoEIteration = 1,

paramsToPlot = list(c("mzPPM", "chromFWHM"), c("chromFWHM", "chromSNR")))

plot 3d perspective plots
plot(ftOpt, paramSet = 1, DoEIteration = 1, type = "persp")

End(Not run)

parents Base transformation products (TP) class

Description

Holds information for all TPs for a set of parents.

230 parents

Usage

parents(TPs)

products(TPs)

S4 method for signature 'transformationProducts'
parents(TPs)

S4 method for signature 'transformationProducts'
products(TPs)

S4 method for signature 'transformationProducts'
length(x)

S4 method for signature 'transformationProducts'
names(x)

S4 method for signature 'transformationProducts'
show(object)

S4 method for signature 'transformationProducts,ANY,missing,missing'
x[i, j, ..., drop = TRUE]

S4 method for signature 'transformationProducts,ANY,missing'
x[[i, j]]

S4 method for signature 'transformationProducts'
x$name

S4 method for signature 'transformationProducts'
as.data.table(x)

S4 method for signature 'transformationProducts'
convertToSuspects(obj, includeParents = FALSE)

S4 method for signature 'transformationProducts'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'transformationProducts'
filter(obj, properties = NULL, verbose = TRUE, negate = FALSE)

Arguments

TPs, x, obj, object
transformationProducts object to be accessed

i, j For [/[[: A numeric or character value which is used to select parents by their
index or name, respectively (for the order/names see names()).

parents 231

For [: Can also be logical to perform logical selection (similar to regular vec-
tors). If missing all parents are selected.

For [[: should be a scalar value.

For delete: The data to remove from. i are the parents as numeric index,
logical or character, j the transformation products as numeric index (row) or
name of the TP. If either is NULL then data for all is removed. j may also be a
function: it will be called for each parent, with the TP info table (a data.table),
the parent name and any other arguments passed as ... to delete. The return
value of this function specifies the TP indices (rows) (specified as an integer
or logical vector) or names to be removed.

... For delete: passed to the function specified as j. Otherwise ignored.

drop ignored.

name The parent name (partially matched).

includeParents If TRUE then parents are also included in the returned suspect list.

properties A named list with properties to be filtered. Each item in the list should
be named with the name of the property, and should be a vector with allowed
values. To obtain the possible properties, run e.g. names(TPs)[[1]]. Example:
properties=list(likelihood=c("LIKELY","PROBABLE")). Set to NULL to
ignore.

verbose If set to FALSE then no text output is shown.

negate If TRUE then filters are performed in opposite manner.

Details

This class holds all generated data for transformation products for a set of parents. The class is
virtual and derived objects are created by TP generators.

The TP data in objects from this class include a retDir column. These are numeric values that
hint what the the chromatographic retention order of a TP might be compared to its parent: a
value of ‘-1’ means it will elute earlier, ‘1’ it will elute later and ‘0’ that there is no significant
difference or the direction is unknown. These values are based on a typical reversed phase sep-
aration. When structural information is available (e.g. when generateTPsBioTransformer or
generateTPsLibrary was used to generate the data), the retDir values are based on calculated
log P values of the parent and its TPs.

Value

delete returns the object for which the specified data was removed.

filter returns a filtered transformationProducts object.

Methods (by generic)

• parents(transformationProducts): Accessor method for the parents slot of a transformationProducts
class.

• products(transformationProducts): Accessor method for the products slot.

232 parents

• length(transformationProducts): Obtain total number of transformation products.

• names(transformationProducts): Obtain the names of all parents in this object.

• show(transformationProducts): Show summary information for this object.

• x[i: Subset on parents.

• x[[i: Extracts a table with TPs for a parent.

• $: Extracts a table with TPs for a parent.

• as.data.table(transformationProducts): Returns all TP data in a table.

• convertToSuspects(transformationProducts): Converts this object to a suspect list that
can be used as input for screenSuspects.

• delete(transformationProducts): Completely deletes specified transformation product
data.

• filter(transformationProducts): Performs rule-based filtering. Useful to simplify and
clean-up the data.

Slots

parents A data.table with metadata for all parents that have TPs in this object. Use the parents
method for access.

products A list with data.table entries with TP information for each parent. Use the products
method for access.

S4 class hierarchy

• workflowStep

– transformationProducts

* transformationProductsStructure

· transformationProductsStructureConsensus

· transformationProductsCTS

· transformationProductsBT

· transformationProductsLibrary

* transformationProductsFormula

· transformationProductsLibraryFormula

* transformationProductsLogic

See Also

The derived transformationProductsStructure class for more methods and generateTPs

peakLists 233

peakLists Class containing MS Peak Lists

Description

Contains all MS (and MS/MS where available) peak lists for a featureGroups object.

Usage

peakLists(obj, ...)

averagedPeakLists(obj, ...)

spectrumSimilarity(obj, ...)

S4 method for signature 'MSPeakLists'
peakLists(obj)

S4 method for signature 'MSPeakLists'
averagedPeakLists(obj)

S4 method for signature 'MSPeakLists'
analyses(obj)

S4 method for signature 'MSPeakLists'
groupNames(obj)

S4 method for signature 'MSPeakLists'
length(x)

S4 method for signature 'MSPeakLists'
show(object)

S4 method for signature 'MSPeakLists,ANY,ANY,missing'
x[i, j, ..., reAverage = FALSE, drop = TRUE]

S4 method for signature 'MSPeakLists,ANY,ANY'
x[[i, j]]

S4 method for signature 'MSPeakLists'
x$name

S4 method for signature 'MSPeakLists'
as.data.table(x, fGroups = NULL, averaged = TRUE)

S4 method for signature 'MSPeakLists'
delete(obj, i = NULL, j = NULL, k = NULL, reAverage = FALSE, ...)

234 peakLists

S4 method for signature 'MSPeakLists'
filter(
obj,
absMSIntThr = NULL,
absMSMSIntThr = NULL,
relMSIntThr = NULL,
relMSMSIntThr = NULL,
topMSPeaks = NULL,
topMSMSPeaks = NULL,
minMSMSPeaks = NULL,
isolatePrec = NULL,
deIsotopeMS = FALSE,
deIsotopeMSMS = FALSE,
withMSMS = FALSE,
annotatedBy = NULL,
retainPrecursorMSMS = TRUE,
reAverage = FALSE,
negate = FALSE

)

S4 method for signature 'MSPeakLists'
plotSpectrum(
obj,
groupName,
analysis = NULL,
MSLevel = 1,
title = NULL,
specSimParams = getDefSpecSimParams(),
xlim = NULL,
ylim = NULL,
...

)

S4 method for signature 'MSPeakLists'
spectrumSimilarity(
obj,
groupName1,
groupName2 = NULL,
analysis1 = NULL,
analysis2 = NULL,
MSLevel = 1,
specSimParams = getDefSpecSimParams(),
NAToZero = FALSE,
drop = TRUE

)

S4 method for signature 'MSPeakListsSet'

peakLists 235

analysisInfo(obj)

S4 method for signature 'MSPeakListsSet'
show(object)

S4 method for signature 'MSPeakListsSet,ANY,ANY,missing'
x[i, j, ..., reAverage = FALSE, sets = NULL, drop = TRUE]

S4 method for signature 'MSPeakListsSet'
as.data.table(x, fGroups = NULL, averaged = TRUE)

S4 method for signature 'MSPeakListsSet'
delete(obj, i = NULL, j = NULL, k = NULL, reAverage = FALSE, ...)

S4 method for signature 'MSPeakListsSet'
filter(
obj,
...,
annotatedBy = NULL,
retainPrecursorMSMS = TRUE,
reAverage = FALSE,
negate = FALSE,
sets = NULL

)

S4 method for signature 'MSPeakListsSet'
plotSpectrum(
obj,
groupName,
analysis = NULL,
MSLevel = 1,
title = NULL,
specSimParams = getDefSpecSimParams(),
xlim = NULL,
ylim = NULL,
perSet = TRUE,
mirror = TRUE,
...

)

S4 method for signature 'MSPeakListsSet'
spectrumSimilarity(
obj,
groupName1,
groupName2 = NULL,
analysis1 = NULL,
analysis2 = NULL,
MSLevel = 1,

236 peakLists

specSimParams = getDefSpecSimParams(),
NAToZero = FALSE,
drop = TRUE

)

S4 method for signature 'MSPeakListsSet'
unset(obj, set)

getDefIsolatePrecParams(...)

Arguments

obj, x, object The MSPeakLists object to access.
... Further arguments passed to plot.

For sets workflow methods: further arguments passed to the base MSPeakLists
method.

i, j For [/[[: A numeric or character value which is used to select analyses/feature
groups by their index or name, respectively (for the order/names see analyses()/groupNames()).

For [: Can also be logical to perform logical selection (similar to regular vec-
tors). If missing all analyses/feature groups are selected.

For [[: should be a scalar value. If j is not specified, i selects by feature
groups instead.

For delete: The data to remove from. i are the feature groups as numeric
index, logical or character, j the MS peaks as numeric indices (rows). If either
is NULL then data for all is removed. j may also be a function: it will be called
for each feature group, with the peak list table (a data.table), feature group
name, analysis (NULL if averaged peak list), type ("MS" or "MSMS") and any other
arguments passed as ... to delete. The return value of this function specifies
the peak list indices (rows) to be removed (specified as an integer or logical
vector).

reAverage Set to TRUE to regenerate group averaged MS peak lists. NOTE it is very im-
portant that any annotation data relying on MS peak lists (formulae/compounds)
are regenerated afterwards! Otherwise it is likely that e.g. plotting methods will
use wrong MS/MS data.

drop If set to TRUE and if the comparison is made between two spectra then drop is
used to reduce the matrix return value to a numeric vector.

name The feature group name (partially matched).
fGroups The featureGroups object that was used to generate this object. If not NULL it

is used to add feature group information (retention and m/z values).
averaged If TRUE then feature group averaged peak list data is used.
k A vector with analyses (character with names or integer with indices) for

which the data should be deleted. If k!=NULL then deletions will not occur on
group averaged peak lists. Otherwise, if k=NULL then deletion occurs on both
group averaged and analysis specific peak lists.

peakLists 237

absMSIntThr, absMSMSIntThr, relMSIntThr, relMSMSIntThr
Absolute/relative intensity threshold for MS or MS/MS peak lists. NULL for
none.

topMSPeaks, topMSMSPeaks
Only consider this amount of MS or MS/MS peaks with highest intensity. NULL
to consider all.

minMSMSPeaks If the number of peaks in an MS/MS peak list (excluding the precursor peak) is
lower than this it will be completely removed. Set to NULL to ignore.

isolatePrec If not NULL then value should be a list with parameters used for isolating the
precursor and its isotopes in MS peak lists (see Isolating precursor data).
Alternatively, TRUE to apply the filter with default settings (as given with getDefIsolatePrecParams).

deIsotopeMS, deIsotopeMSMS
Remove any isotopic peaks in MS or MS/MS peak lists. This may improve data
processing steps which do not assume the presence of isotopic peaks (e.g. Met-
Frag for MS/MS). Note that getMzRPeakLists does not (yet) support flagging
of isotopes.

withMSMS If set to TRUE then only results will be retained for which MS/MS data is avail-
able. if negate=TRUE then only results without MS/MS data will be retained.

annotatedBy Either a formulas or compounds object, or a list with both. Any MS/MS
peaks that are not annotated by any of the candidates in the specified objects are
removed.

retainPrecursorMSMS

If TRUE then precursor peaks will never be filtered out from MS/MS peak lists
(note that precursors are never removed from MS peak lists). The negate argu-
ment does not affect this setting.

negate If TRUE then filters are applied in opposite manner.

groupName The name of the feature group for which a plot should be made. To compare
spectra, two group names can be specified.

analysis The name of the analysis for which a plot should be made. If NULL then data
from the feature group averaged peak list is used. When comparing spectra,
either NULL or the analyses for both spectra should be specified.

MSLevel The MS level: ‘1’ for regular MS, ‘2’ for MSMS.

title The title of the plot. If NULL a title will be automatically made.

specSimParams A named list with parameters that influence the calculation of MS spectra sim-
ilarities. See the spectral similarity parameters documentation for more details.

xlim, ylim Sets the plot size limits used by plot. Set to NULL for automatic plot sizing.
groupName1, groupName2

The names of the feature groups for which the comparison should be made. If
both arguments are specified then a comparison is made with the spectra speci-
fied by groupName1 vs those specified by groupName2. The length of either can
be ‘>1’ to generate a comparison matrix. Alternatively, if groupName2 is NULL
then all the spectra specified in groupName1 will be compared with eachother,
i.e. resulting in a square similarity matrix.

238 peakLists

analysis1, analysis2
The name of the analysis (analyses) for the comparison. If NULL then data from
the feature group averaged peak list is used. Otherwise, should be the same
length as groupName1/groupName2.

NAToZero Set to TRUE to convert NA similarities (i.e. when no similarity could be calcu-
lated) to zero values.

sets (sets workflow) A character with name(s) of the sets to keep (or remove if
negate=TRUE).

perSet, mirror (sets workflow) If perSet=TRUE then the set specific mass peaks are annotated
separately. Furthermore, if mirror=TRUE (and there are two sets in the object)
then a mirror plot is generated.

set (sets workflow) The name of the set.

Details

Objects for this class are returned by generateMSPeakLists.

The getDefIsolatePrecParams is used to create a parameter list for isolating the precursor and its
isotopes (see Isolating precursor data).

Value

peakLists returns a nested list containing MS (and MS/MS where available) peak lists per feature
group and per analysis. The format is: [[analysis]][[featureGroupName]][[MSType]][[PeakLists]]
where MSType is either "MS" or "MSMS" and PeakLists a data.table containing all m/z values (mz
column) and their intensities (intensity column). In addition, the peak list tables may contain
a cmp column which contains an unique alphabetical identifier to which isotopic cluster (or "com-
pound") a mass belongs (only supported by MS peak lists generated by Bruker tools at the moment).

averagedPeakLists returns a nested list of feature group averaged peak lists in a similar format as
peakLists.

delete returns the object for which the specified data was removed.

Methods (by generic)

• peakLists(MSPeakLists): Accessor method to obtain the MS peak lists.

• averagedPeakLists(MSPeakLists): Accessor method to obtain the feature group averaged
MS peak lists.

• analyses(MSPeakLists): returns a character vector with the names of the analyses for
which data is present in this object.

• groupNames(MSPeakLists): returns a character vector with the names of the feature groups
for which data is present in this object.

• length(MSPeakLists): Obtain total number of m/z values.

• show(MSPeakLists): Shows summary information for this object.

• x[i: Subset on analyses/feature groups.

• x[[i: Extract a list with MS and MS/MS (if available) peak lists. If the second argument (j)
is not specified the averaged peak lists for the group specified by the first argument (i) will be
returned.

peakLists 239

• $: Extract group averaged MS peaklists for a feature group.

• as.data.table(MSPeakLists): Returns all MS peak list data in a table.

• delete(MSPeakLists): Completely deletes specified peaks from MS peak lists.

• filter(MSPeakLists): provides post filtering of generated MS peak lists, which may fur-
ther enhance quality of subsequent workflow steps (e.g. formulae calculation and compounds
identification) and/or speed up these processes. The filters are applied to peak lists for each
feature and feature group. The feature group peak lists are not re-averaged by default (see the
reAverage argument). not filtered afterwards.

• plotSpectrum(MSPeakLists): Plots a spectrum using MS or MS/MS peak lists for a given
feature group. Two spectra can be compared when two feature groups are specified.

• spectrumSimilarity(MSPeakLists): Calculates the spectral similarity between two or more
spectra.

Slots

peakLists Contains a list of all MS (and MS/MS) peak lists. Use the peakLists method for
access.

metadata Metadata for all spectra used to generate peak lists. Follows the format of the peakLists
slot.

averagedPeakLists A list with averaged MS (and MS/MS) peak lists for each feature group.

avgPeakListArgs A list with arguments used to generate feature group averaged MS(/MS) peak
lists.

origFGNames A character with the original input feature group names.

analysisInfo (sets workflow) Analysis information. Use the analysisInfo method for access.

Isolating precursor data

Formula calculation typically relies on evaluating the measured isotopic pattern from the precursor
to score candidates. Some algorithms (currently only GenForm) penalize candidates if mass peaks
are present in MS1 spectra that do not contribute to the isotopic pattern. Since these spectra are
typically very ’noisy’ due to background and co-eluting ions, an additional filtering step may be
recommended prior to formula calculation. During this precursor isolation step all mass peaks are
removed that are (1) not the precursor and (2) not likely to be an isotopologue of the precursor. To
determine potential isotopic peaks the following parameters are used:

• maxIsotopes The maximum number of isotopes to consider. For instance, a value of ‘5’
means that M+0 (i.e. the monoisotopic peak) till M+5 is considered. All mass peaks outside this
range are removed.

• mzDefectRange A two-sized vector specifying the minimum (can be negative) and maximum
m/z defect deviation compared to the precursor m/z defect. When chlorinated, brominated or
other compounds with strong m/z defect in their isotopologues are to be considered a higher
range may be desired. On the other hand, for natural compounds this range may be tightened.
Note that the search range is propegated with increasing distance from the precursor, e.g. the
search range is doubled for M+2, tripled for M+3 etc.

240 peakLists

• intRange A two-sized vector specifying the minimum and maximum relative intensity range
compared to the precursor. For instance, c(0.001, 2) removes all peaks that have an intensity
below 0.1% or above 200% of that of the precursor.

• z The z value (i.e. absolute charge) to be considerd. For instance, a value of 2 would look for
M+0.5, M+1 etc. Note that the mzDefectRange is adjusted accordingly (e.g. halved if z=2).

• maxGap The maximum number of missing adjacent isotopic peaks (’gaps’). If the (rounded)
m/z difference to the previous peak exceeds this value then this and all next peaks will be
removed. Similar to z, the maximum gap is automatically adjusted for charge.

These parameters should be in a list that is passed to the isolatePrec argument to filter. The
default values can be obtained with the getDefIsolatePrecParams function:

maxIsotopes=5; mzDefectRange=c(-0.01, 0.01); intRange=c(0.001, 2); z=1; maxGap=2

S4 class hierarchy

• workflowStep

– MSPeakLists

* MSPeakListsSet

* MSPeakListsUnset

Source

spectrumSimilarity: The principles of spectral binning and cosine similarity calculations were
loosely was based on the code from SpectrumSimilarity() function of OrgMassSpecR.

Sets workflows

The MSPeakListsSet class is applicable for sets workflows. This class is derived from MSPeakLists
and therefore largely follows the same user interface.

The following methods are specifically defined for sets workflows:

• All the methods from base class workflowStepSet.

• unset Converts the object data for a specified set into a ’non-set’ object (MSPeakListsUnset),
which allows it to be used in ’regular’ workflows. Only the MS peaks that are present in the
specified set are kept.

• analysisInfo Returns the analysis info for this object.

The following methods are changed or with new functionality:

• filter and the subset operator ([) Can be used to select data that is only present for selected
sets. The filter method is applied for each set individually, and afterwards the results are
combined again (see generateMSPeakLists). Note that this has important implications for
e.g. relative intensity filters (relMSIntThr/relMSMSIntThr), topMSPeaks/topMSMSPeaks and
minMSMSPeaks. Similarly, when the annotatedBy filter is applied, each set specific MS peak
list is filtered by the annotation results from only that set.

• plotSpectrum Is able to highlight set specific mass peaks (perSet and mirror arguments).

plotHeatMap 241

• spectrumSimilarity First calculates similarities for each spectral pair per set (e.g. all posi-
tive mode spectra are compared and then all negative mode spectra are compared). This data
is then combined into an overall similarity value. How this combination is performed depends
on the setCombineMethod field of the specSimParams argument.

Author(s)

For spectrumSimilarity: major contributions by Bas van de Velde for spectral binning and simi-
larity calculation.

plotHeatMap Components based on clustered intensity profiles.

Description

This class is derived from componentsClust and is used to store hierarchical clustering information
from intensity profiles of feature groups.

Usage

plotHeatMap(obj, ...)

S4 method for signature 'componentsIntClust'
plotHeatMap(

obj,
interactive = FALSE,
col = NULL,
margins = c(6, 2),
cexCol = 1,
...

)

S4 method for signature 'componentsIntClust'
plotInt(
obj,
index,
pch = 20,
type = "b",
lty = 3,
col = NULL,
plotArgs = NULL,
linesArgs = NULL

)

242 plotHeatMap

Arguments

obj A componentsIntClust object.

... Further options passed to heatmap.2 / heatmaply (plotHeatMap).

interactive If TRUE an interactive heatmap will be drawn (with heatmaply).

col The colour used for plotting. Set to NULL for automatic colours.

margins, cexCol Passed to heatmap.2

index Numeric component/cluster index or component name.

pch, type, lty Passed to lines.
plotArgs, linesArgs

A list with further arguments passed to plot and lines, respectively.

Details

Objects from this class are generated by generateComponentsIntClust

Value

plotHeatMap returns the same as heatmap.2 or heatmaply.

Methods (by generic)

• plotHeatMap(componentsIntClust): draws a heatmap using the heatmap.2 or heatmaply
function.

• plotInt(componentsIntClust): makes a plot for all (normalized) intensity profiles of the
feature groups within a given cluster.

Slots

clusterm Numeric matrix with normalized feature group intensities that was used for clustering.

S4 class hierarchy

• componentsClust

– componentsIntClust

Note

When the object is altered (e.g. by filtering or subsetting it), methods that need the original clustered
data such as plotting methods do not work anymore and stop with an error.

See Also

componentsClust for other relevant methods and generateComponents

pred-aggr-params 243

pred-aggr-params Parameters to aggregate concentrations/toxicity values assigned to
feature groups

Description

Parameters that are used by method functions such as.data.table to aggregate predicted concen-
trations or toxicities.

Usage

getDefPredAggrParams(all = mean, ...)

Arguments

all The default aggregation function for all types, e.g. mean.

... optional named arguments that override defaults.

Details

Multiple concentration or toxicity values may be assigned to a single feature group. To ease the in-
terpretation and data handling, several functions aggregate these values prior their use. Aggregation
occurs by the following data:

• The candidate (i.e. suspect or annotation candidate). This is mainly relevant for sets work-
flows, where calculations among sets may yield different results for the same candidate.

• The prediction type, e.g. all values that were obtained from suspect or compound annotation
data.

• The feature group.

The aggregation of all data first occurs by the same candidate/type/feature group, then the same
type/feature group and finally for each feature group. This ensures that e.g. large numbers of data
points for a prediction type do not bias results.

The candidateFunc, typeFunc and groupFunc parameters specify the function that should be
used to aggregate data. Commonly, functions such mean, min or max can be used here. Note that
the function does not need to handle NA values, as these are removed in advance.

The preferType parameters specifies the preferred prediction type. Any values from other pre-
diction types will be ignored unless the preferred type is not available for a feature group. Valid
values are "suspect" (the default), "compound" (results from compound annotation by SMILES),
"SIRIUS_FP" (results from formula/compound annotation with SIRIUS+CSI:FingerID) or "none".

These parameters should be stored inside a list. The getDefPredAggrParams function can be
used to generate such parameter list with defaults.

244 pred-quant

pred-quant Functionality to predict quantitative data

Description

Functions to predict response factors and feature concentrations from SMILES and/or SIRIUS+CSI:FingerID
fingerprints using the MS2Quant package.

Usage

S4 method for signature 'featureGroups'
calculateConcs(fGroups, featureAnn, areas = FALSE)

S4 method for signature 'featureGroupsSet'
calculateConcs(fGroups, featureAnn, areas = FALSE)

S4 method for signature 'compounds'
predictRespFactors(

obj,
fGroups,
calibrants,
eluent,
organicModifier,
pHAq,
concUnit = "ugL",
calibConcUnit = concUnit,
updateScore = FALSE,
scoreWeight = 1,
parallel = TRUE

)

S4 method for signature 'featureGroupsScreening'
predictRespFactors(
obj,
calibrants,
eluent,
organicModifier,
pHAq,
concUnit = "ugL",
calibConcUnit = concUnit

)

S4 method for signature 'featureGroupsScreening'
calculateConcs(fGroups, featureAnn = NULL, areas = FALSE)

S4 method for signature 'featureGroupsScreeningSet'
predictRespFactors(obj, calibrants, ...)

pred-quant 245

S4 method for signature 'featureGroupsScreeningSet'
calculateConcs(fGroups, featureAnn = NULL, areas = FALSE)

S4 method for signature 'compoundsSet'
predictRespFactors(obj, fGroups, calibrants, ...)

S4 method for signature 'compoundsSIRIUS'
predictRespFactors(
obj,
fGroups,
calibrants,
eluent,
organicModifier,
pHAq,
concUnit = "ugL",
calibConcUnit = concUnit,
type = "FP"

)

S4 method for signature 'formulasSet'
predictRespFactors(obj, fGroups, calibrants, ...)

S4 method for signature 'formulasSIRIUS'
predictRespFactors(
obj,
fGroups,
calibrants,
eluent,
organicModifier,
pHAq,
concUnit = "ugL",
calibConcUnit = concUnit

)

getQuantCalibFromScreening(fGroups, concs, areas = FALSE, average = FALSE)

Arguments

fGroups For predictRespFactors methods for feature annotations: The featureGroups
object for which the annotations were performed.
For calculateConcs: The featureGroups object for which concentrations
should be calculated.
For getQuantCalibFromScreening: A feature groups object screened for the
calibrants with screenSuspects.

featureAnn A featureAnnotations object (e.g. formulasSIRIUS or compounds) which
contains response factors. Optional if calculateConcs is called on suspect
screening results (i.e. featureGroupsScreening method).

246 pred-quant

areas Set to TRUE to use peak areas instead of peak heights. Note: for calculateConcs
this should follow what is in the calibrants table.

obj The workflow object for which predictions should be performed, e.g. feature
groups with screening results (featureGroupsScreening) or compound anno-
tations (compounds).

calibrants A data.frame with calibrants, see the Calibration section below.
(sets workflow) Should be a list with the calibrants for each set.

eluent A data.frame that describes the LC gradient program. Should have a column
time with the retention time in seconds and a column B with the corresponding
percentage of the organic modifier (‘0-100’).

organicModifier

The organic modifier of the mobile phase: either "MeOH" (methanol) or "MeCN"
(acetonitrile).

pHAq The PH of the aqueous part of the mobile phase.

concUnit The concentration unit for calculated concentrations. Can be molar based ("nM",
"uM", "mM", "M") or mass based ("ngL", "ugL", "mgL", "gL"). Furthermore, can
be prefixed with "log " for logarithmic concentrations (e.g. "log mM").

calibConcUnit The concentration unit used in the calibrants table. For possible values see the
concUnit argument.

updateScore, scoreWeight
If updateScore=TRUE then the annotation score column is updated by adding
normalized values of the response factor (weighted by ‘scoreWeight’). Cur-
rently, this only makes sense for annotations performed with MetFrag!

parallel If set to TRUE then code is executed in parallel through the futures package.
Please see the parallelization section in the handbook for more details.

... (sets workflow) Further arguments passed to the non-sets workflow method.

type Which types of predictions should be performed: should be "FP" (SIRIUS+CSI:FingerID
fingerprints), "SMILES" or "both". Only relevant for compoundsSIRIUS method.

concs A data.frame with concentration data. See the Calibration section below.

average Set to TRUE to average intensity values within replicate groups.

Details

The MS2Quant R package predicts concentrations from SMILES and/or MS/MS fingerprints ob-
tained with SIRIUS+CSI:FingerID. The predictRespFactors method functions interface with
this package to calculate response factors, which can then be used to calculate feature concentra-
tions with the calculateConcs method function.

Value

predictRespFactors returns an object amended with response factors (RF_SMILES/LRF_SIRFP
columns).

calculateConcs returns a featureGroups based object amended with concentrations for each
feature group (accessed with the concentrations method).

https://CRAN.R-project.org/package=futures
https://github.com/kruvelab/MS2Quant

pred-quant 247

Calibration

The MS2Quant package requires calibration to convert predicted ionization efficiencies to instru-
ment/method specific response factors. The calibration data should be specified with the calibrants
argument to predictRespFactors. This should be a data.frame with intensity observations at
different concentrations for a set of calibrants. Each row specifies one intensity observation at one
concentration. The table should have the following columns:

• name The name of the calibrant. Can be freely chosen.
• SMILES The SMILES of the calibrant.
• rt The retention time of the calibrant (in seconds).
• intensity The peak intensity (or area, see the areas argument) of the calibrant.
• conc The concentration of the calibrant (see the calibConcUnit argument for specifying the

unit).

It is recommended to include multiple calibrants (e.g. ‘>=10’) at multiple concentrations (e.g.
‘>=5’). The latter is achieved by adding multiple rows for the same calibrant (keeping the name/SMILES/rt
columns constant). It is also possible to follow the column naming used by MS2Quant (however
retention times should still be in seconds!). For more details and tips see https://github.com/
kruvelab/MS2Quant.

The getQuantCalibFromScreening function can be used to automatically generate a calibrants
table from a feature groups object with suspect screening results. Here, the idea is to perform a
screening with screenSuspects with a suspect list that contain the calibrants, which is then used
to construct the calibrant table. It is highly recommended to add retention times for the calibrants in
the suspect list to ensure the calibrant is assigned to the correct feature. Furthermore, it is possible
to simply add the calibrants to the ’regular’ suspect list in case a suspect screening was already
part of the workflow. The getQuantCalibFromScreening function still requires you to specify
concentration data, which is achieved via the concs argument. This should be a data.frame with
a column name corresponding to the calibrant name (i.e. same as used by screenSuspects above)
and columns with concentration data. The latter columns specify the concentrations of a calibrant
in different replicate groups (as defined in the analysis information). The concentration columns
should be named after the corresponding replicate group. Only those replicate groups that should
be used for calibration need to be included. Furthermore, NA values can be used if a replicate group
should be ignored for a specific calibrant.

Predicting response factors

The response factors are predicted with the predictRespFactors generic functions, which accepts
the following input:

• Suspect screening results. The SMILES data is used to predict response factors for suspect hits.
• Formula annotation data obtained with "sirius" algorithm (generateFormulasSIRIUS).

The predictions are performed for each formula candidate using SIRIUS+CSI:FingerID fin-
gerprints. For this reason, the getFingerprint argument must be set to TRUE when generating
the formula data.

• Compound annotation data obtained with the "sirius" algorithm (generateCompoundsSIRIUS).
The predictions are performed for each annotation candidate using its SMILES and/or SIRIUS+CSI:FingerID
fingerprints. The predictions are performed on a per formula basis, hence, response factors for
isomers will be equal.

https://github.com/kruvelab/MS2Quant
https://github.com/kruvelab/MS2Quant

248 pred-quant

• Compound annotation data obtained with algorithms other than "sirius". The response fac-
tors are predicted from SMILES data.

When SMILES data is used then predictions of response factors are generally more accurate. How-
ever, calculations with SIRIUS+CSI:FingerID fingerprints are faster and only require the formula
and MS/MS spectrum, i.e. not the full structure. Hence, calculations with SMILES are mostly use-
ful in suspect screening workflows, or with high confidence compound annotation data, whereas
MS/MS fingerprints are suitable with unknowns.

For annotation data the calculations are performed for all candidates. This can especially lead to
long running calculations when SMILES data is used. Hence, it is strongly recommended to first
prioritize the annotation results, e.g. with the topMost argument to the filter method.

When response factors are predicted from SIRIUS+CSI:FingerID fingerprints then only formula
and MS/MS spectra are used, even if compound annotations are used for input. The major differ-
ence is that with formula annotation input all formula candidates for which a fingerprint could be
generated are considered, whereas with compound annotations only candidate formulae are consid-
ered for which also a structure could be assigned. Hence, the formula annotation input could be
more comprehensive, whereas predictions from structure annotations could lead to more represen-
tative results as only formulae are considered for which at least one structure could be assigned.

Assigning concentrations

The calculateConcs generic function is used to assign concentrations for each feature using the
response factors discussed in the previous section. The function takes response factors from suspect
screening results and/or feature annotation data. If multiple response factors were predicted for the
same feature group, for instance when multiple annotation candidates or suspect hits for this feature
group are present, then a concentrations is assigned for all response factors. These values can later
be easily aggregated with e.g. the as.data.table function.

Note

The rcdk package and OpenBabel tool are used internally to calculate molecular weights. Please
make sure that OpenBabel is installed.

MS2Quant currently only supports ‘M+H’ and ‘M+’ adducts when performing predictions with SIRIUS:FingerID
fingerprints. Predictions for candidates with other adducts, including ‘M-H]’, are skipped with a
warning.

References

OBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011). “Open
Babel: An open chemical toolbox.” Journal of Cheminformatics, 3(1). doi:10.1186/17582946333.

Guha R (2007). “Chemical Informatics Functionality in R.” Journal of Statistical Software, 18(6).

Sepman H, Malm L, Peets P, MacLeod M, Martin J, Breitholtz M, Kruve A (2023). “Bypass-
ing the Identification: MS2Quant for Concentration Estimations of Chemicals Detected with Non-
target LC-HRMS from MS2 Data.” Analytical Chemistry, 95(33), 12329–12338. doi:10.1021/
acs.analchem.3c01744, https://doi.org/10.1021/acs.analchem.3c01744.

https://CRAN.R-project.org/package=rcdk
https://github.com/openbabel/openbabel
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1021/acs.analchem.3c01744
https://doi.org/10.1021/acs.analchem.3c01744
https://doi.org/10.1021/acs.analchem.3c01744

pred-tox 249

See Also

Toxicity prediction

pred-tox Functionality to predict toxicities

Description

Functions to predict toxicities from SMILES and/or SIRIUS+CSI:FingerID fingerprints using the
MS2Tox package.

Usage

S4 method for signature 'featureGroups'
calculateTox(fGroups, featureAnn)

S4 method for signature 'featureGroupsSet'
calculateTox(fGroups, featureAnn)

S4 method for signature 'compounds'
predictTox(

obj,
LC50Mode = "static",
concUnit = "ugL",
updateScore = FALSE,
scoreWeight = 1,
parallel = TRUE

)

S4 method for signature 'featureGroupsScreening'
predictTox(obj, LC50Mode = "static", concUnit = "ugL")

S4 method for signature 'featureGroupsScreening'
calculateTox(fGroups, featureAnn = NULL)

S4 method for signature 'featureGroupsScreeningSet'
predictTox(obj, ...)

S4 method for signature 'featureGroupsScreeningSet'
calculateTox(fGroups, featureAnn = NULL)

S4 method for signature 'compoundsSet'
predictTox(obj, ...)

S4 method for signature 'compoundsSIRIUS'
predictTox(obj, type = "FP", LC50Mode = "static", concUnit = "ugL")

250 pred-tox

S4 method for signature 'formulasSet'
predictTox(obj, ...)

S4 method for signature 'formulasSIRIUS'
predictTox(obj, LC50Mode = "static", concUnit = "ugL")

Arguments

fGroups For predictTox methods for feature annotations: The featureGroups object
for which the annotations were performed.
For calculateTox: The featureGroups object for which toxicities should be
assigned.

featureAnn A featureAnnotations object (e.g. formulasSIRIUS or compounds) which
contains toxicities. Optional if calculateTox is called on suspect screening
results (i.e. featureGroupsScreening method).

obj The workflow object for which predictions should be performed, e.g. feature
groups with screening results (featureGroupsScreening) or compound anno-
tations (compounds).

LC50Mode The mode used for predictions: should be "static" or "flow".

concUnit The concentration unit for calculated toxicities. Can be molar based ("nM",
"uM", "mM", "M") or mass based ("ngL", "ugL", "mgL", "gL"). Furthermore, can
be prefixed with "log " for logarithmic concentrations (e.g. "log mM").

updateScore, scoreWeight
If updateScore=TRUE then the annotation score column is updated by adding
normalized values of the response factor (weighted by ‘scoreWeight’). Cur-
rently, this only makes sense for annotations performed with MetFrag!

parallel If set to TRUE then code is executed in parallel through the futures package.
Please see the parallelization section in the handbook for more details.

... (sets workflow) Further arguments passed to the non-sets workflow method.

type Which types of predictions should be performed: should be "FP" (SIRIUS+CSI:FingerID
fingerprints), "SMILES" or "both". Only relevant for compoundsSIRIUS method.

Details

The MS2Tox R package predicts toxicities from SMILES and/or MS/MS fingerprints obtained with
SIRIUS+CSI:FingerID. The predictTox method functions interface with this package to predict
toxicities, which can then be assigned to feature groups with the calculateTox method function.

Value

predictTox returns an object amended with LC 50 values (LC50_SMILES/LC50_SIRFP columns).

calculateTox returns a featureGroups based object amended with toxicity values for each feature
group (accessed with the toxicities method).

https://CRAN.R-project.org/package=futures
https://github.com/kruvelab/MS2Tox

pred-tox 251

Predicting toxicities

The toxicities are predicted with the predictTox generic functions, which accepts the following
input:

• Suspect screening results. The SMILES data is used to predict toxicities for suspect hits.

• Formula annotation data obtained with "sirius" algorithm (generateFormulasSIRIUS).
The predictions are performed for each formula candidate using SIRIUS+CSI:FingerID fin-
gerprints. For this reason, the getFingerprint argument must be set to TRUE when generating
the formula data.

• Compound annotation data obtained with the "sirius" algorithm (generateCompoundsSIRIUS).
The predictions are performed for each annotation candidate using its SMILES and/or SIRIUS+CSI:FingerID
fingerprints. The predictions are performed on a per formula basis, hence, toxicities for iso-
mers will be equal.

• Compound annotation data obtained with algorithms other than "sirius". The toxicities are
predicted from SMILES data.

When SMILES data is used then predictions of toxicities are generally more accurate. However,
calculations with SIRIUS+CSI:FingerID fingerprints are faster and only require the formula and
MS/MS spectrum, i.e. not the full structure. Hence, calculations with SMILES are mostly useful in
suspect screening workflows, or with high confidence compound annotation data, whereas MS/MS
fingerprints are suitable with unknowns.

For annotation data the calculations are performed for all candidates. This can especially lead to
long running calculations when SMILES data is used. Hence, it is strongly recommended to first
prioritize the annotation results, e.g. with the topMost argument to the filter method.

When toxicities are predicted from SIRIUS+CSI:FingerID fingerprints then only formula and
MS/MS spectra are used, even if compound annotations are used for input. The major difference
is that with formula annotation input all formula candidates for which a fingerprint could be gen-
erated are considered, whereas with compound annotations only candidate formulae are considered
for which also a structure could be assigned. Hence, the formula annotation input could be more
comprehensive, whereas predictions from structure annotations could lead to more representative
results as only formulae are considered for which at least one structure could be assigned.

Assigning toxicities

The calculateTox generic function is used to assign toxicities for each feature using the toxici-
ties discussed in the previous section. The function takes toxicities from suspect screening results
and/or feature annotation data. If multiple toxicities were predicted for the same feature group, for
instance when multiple annotation candidates or suspect hits for this feature group are present, then
a toxicities is assigned for all toxicities. These values can later be easily aggregated with e.g. the
as.data.table function.

Note

The rcdk package and OpenBabel tool are used internally to calculate molecular weights. Please
make sure that OpenBabel is installed.

https://CRAN.R-project.org/package=rcdk
https://github.com/openbabel/openbabel

252 records

References

OBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011). “Open
Babel: An open chemical toolbox.” Journal of Cheminformatics, 3(1). doi:10.1186/17582946333.

Guha R (2007). “Chemical Informatics Functionality in R.” Journal of Statistical Software, 18(6).

Peets P, Wang W, MacLeod M, Breitholtz M, Martin JW, Kruve A (2022). “MS2Tox Machine
Learning Tool for Predicting the Ecotoxicity of Unidentified Chemicals in Water by Nontarget LC-
HRMS.” Environmental Science & Technology, 56(22), 15508-15517. doi:10.1021/acs.est.2c02536,
PMID: 36269851, https://doi.org/10.1021/acs.est.2c02536.

See Also

Concentration prediction

printPackageOpts Prints all the package options of patRoon and their currently set val-
ues.

Description

Prints all the package options of patRoon and their currently set values.

Usage

printPackageOpts()

records Class to store data from a loaded MS library

Description

Stores the spectra and metadata from the records of an MS library.

Usage

records(obj)

spectra(obj)

S4 method for signature 'MSLibrary'
records(obj)

S4 method for signature 'MSLibrary'
spectra(obj)

https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1021/acs.est.2c02536

records 253

S4 method for signature 'MSLibrary'
length(x)

S4 method for signature 'MSLibrary'
names(x)

S4 method for signature 'MSLibrary'
show(object)

S4 method for signature 'MSLibrary,ANY,missing,missing'
x[i, j, ..., drop = TRUE]

S4 method for signature 'MSLibrary,ANY,missing'
x[[i, j]]

S4 method for signature 'MSLibrary'
x$name

S4 method for signature 'MSLibrary'
as.data.table(x)

S4 method for signature 'MSLibrary'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'MSLibrary'
filter(
obj,
properties = NULL,
massRange = NULL,
mzRangeSpec = NULL,
relMinIntensity = NULL,
topMost = NULL,
onlyAnnotated = FALSE,
negate = FALSE

)

S4 method for signature 'MSLibrary'
convertToSuspects(
obj,
adduct,
spectrumType = "MS2",
avgSpecParams = getDefAvgPListParams(minIntensityPre = 0, minIntensityPost = 2, topMost

= 10),
collapse = TRUE,
suspects = NULL,
prefCalcChemProps = TRUE,
neutralChemProps = FALSE

)

254 records

S4 method for signature 'MSLibrary'
export(obj, type = "msp", out)

S4 method for signature 'MSLibrary,MSLibrary'
merge(x, y, ...)

Arguments

x, obj, object MSLibrary object to be accessed.

i For [/[[: A numeric or character value which is used to select records by their
index or name, respectively (for the order/names see names()).

For [: Can also be logical to perform logical selection (similar to regular vec-
tors). If missing all records are selected.

For [[: should be a scalar value.

... Unused.

drop, j ignored.

name The record name (partially matched).

properties A named list with properties to be filtered. Each item in the list should
be named with the name of the property, and should be a vector with allowed
values. To obtain the possible properties, run e.g. names(records). Example:
properties=list(Instrument_type=c("LC-ESI-QTOF","LC-ESI-TOF")). Set
to NULL to ignore.

massRange Records with a neutral mass outside this range will be removed. Should be a
two-sized numeric vector with the lower and upper mass range. Set to NULL to
ignore.

mzRangeSpec Similar to the massRange argument, but removes any peaks from recorded mass
spectra outside the given m/z range.

relMinIntensity

The minimum relative intensity (‘0-1’) of a mass peak to be kept. Set to NULL
to ignore.

topMost Only keep topMost number of mass peaks for each spectrum. This filter is
applied after others. Set to NULL to ignore.

onlyAnnotated If TRUE then only recorded spectra that are formula annotated are kept.

negate If TRUE then filters are performed in opposite manner.

adduct An adduct object (or something that can be converted to it with as.adduct).
Any records with a different adduct (Precursor_type) are not considered. Al-
ternatively, adduct can be set to NULL to not filter out any records. However, in
this case no MS/MS fragments will be added to the returned suspect list.

spectrumType A character vector which limits library records to the given spectrum types
(Spectrum_type field, e.g. "MS2"). Set to NULL to allow all spectrum types.

avgSpecParams A list with parameters used for averaging spectra. See getDefAvgPListParams
for more details.

records 255

collapse Whether records with the same first-block INCHIKEY should be collapsed. See
the Suspect conversion section for details.

suspects If not NULL then this should be a suspect list (see screenSuspects) which will
be amended with spectra data. See the Suspect conversion section for details.

prefCalcChemProps

If TRUE then calculated chemical properties such as the formula and INCHIKEY
are preferred over what is already present in the input suspect list to convertToSuspects.
For efficiency reasons it is recommended to set this to TRUE. See the Validating and calculating chemical properties
section for more details.

neutralChemProps

If TRUE then the neutral form of the molecule is considered to calculate SMILES,
formulae etc. Enabling this may improve feature matching when considering
common adducts (e.g. [M+H]+, [M-H]-). See the Validating and calculating chemical properties
section for more details.

type The export type. Currently just "msp".

out The file path to the output library file.

y The MSLibrary to be merged with x.

Details

This class is used by loadMSLibrary to store the loaded MS library data.

Value

delete returns the object for which the specified data was removed.

filter returns a filtered MSLibrary object.

convertToSuspects return a suspect list (data.table), which can be used with screenSuspects.

merge returns a merged MSLibrary object.

Methods (by generic)

• records(MSLibrary): Accessor method for the records slot of an MSLibrary class.

• spectra(MSLibrary): Accessor method for the spectra slot of an MSLibrary class.

• length(MSLibrary): Obtains the total number of records stored.

• names(MSLibrary): Obtains the names of the stored records (DB_ID field).

• show(MSLibrary): Shows summary information for this object.

• x[i: Subset on records.

• x[[i: Extracts a spectrum table for a record.

• $: Extracts a spectrum table for a record.

• as.data.table(MSLibrary): Converts all the data (spectra and metadata) to a single data.table.

• delete(MSLibrary): Completely deletes specified full records or spectra.

• filter(MSLibrary): Performs rule-based filtering of records and spectra. This may be espe-
cially to improve annotation with generateCompoundsLibrary.

256 records

• convertToSuspects(MSLibrary): Converts the MS library data to a suspect list, which can
be used with screenSuspects. See the Suspect conversion section for details.

• export(MSLibrary): Exports the library data to a ‘.msp’ file. The export is accelerated by
an C++ interface with Rcpp.

• merge(x = MSLibrary, y = MSLibrary): Merges two MSLibrary objects (x and y). The
records from y that are unique are added to x. Records that were already in x are simply ig-
nored. The SPLASH values are used to test equality between records, hence, the calcSPLASH
argument to loadMSLibrary should be TRUE.

Slots

records A data.table with metadata for all records. Use the records method for access.

spectra A list with all (annotated) spectra. Each spectrum is stored in a data.table. Use the
spectra method for access.

S4 class hierarchy

• workflowStep

– MSLibrary

Suspect conversion

The convertToSuspects method converts MS library data to a suspect list, which can be used
with e.g. screenSuspects. Furthermore, this function can also amend existing suspect lists with
spectral data.

Conversion occurs in either of the following three methods:

1. Direct (collapse=FALSE and suspects=NULL): each record is considered a suspect, and the
resulting suspect list is generated directly by converting the records metadata. The fragments_mz
column for each suspect is constructed from the mass peaks of the corresponding record.

2. Collapse (collapse=TRUE and suspects=NULL): All records with the same first-block INCHIKEY
are first merged, and their spectra are averaged using the parameters from the avgSpecParams
argument (see getDefAvgPListParams). The suspect list is based on the merged records,
where the fragments_mz column is constructed from the averaged spectra. This is generally
a good default, especially with large MS libraries.

3. Amend (suspects is not NULL): only those records are considered if their first-block INCHIKEY
is present in the suspect list. The remaining records and their spectra are then collapsed as de-
scribed for the Collapse method, and the fragments_mz column for each suspect is set from
the averaged spectra. If a suspect is not present in the library, its fragments_mz value will be
empty. Note that any existing fragments_mz data will be overwritten.

Validating and calculating chemical properties

Chemical properties such as SMILES, INCHIKEY and formula in the input suspect list to convertToSuspects
are automatically validated and calculated if missing/invalid.

The internal validation/calculation process performs the following steps:

https://CRAN.R-project.org/package=Rcpp
https://splash.fiehnlab.ucdavis.edu/

records 257

• Validation of SMILES, INCHI, INCHIKEY and formula data (if present). Invalid entries will be
set to NA.

• If neutralChemProps=TRUE then chemical data (SMILES, formulae etc.) is neutralized by
(de-)protonation (using the --neutralized option of OpenBabel). An additional column
molNeutralized is added to mark those molecules that were neutralized. Note that neutral-
ization requires either SMILES or INCHI data to be available.

• The SMILES and INCHI data are used to calculate missing or invalid SMILES, INCHI, INCHIKEY
and formula data. If prefCalcChemProps=TRUE then existing INCHIKEY and formula data is
overwritten by calculated values whenever possible.

• The chemical formulae which were not calculated are verified and normalized. This process
may be time consuming, and is potentially largely avoided by setting prefCalcChemProps=TRUE.

• Neutral masses are calculated for missing values (prefCalcChemProps=FALSE) or whenever
possible (prefCalcChemProps=TRUE).

Note that calculation of formulae for molecules that are isotopically labelled is currently only sup-
ported for deuterium (2H) elements.

This functionality relies heavily on OpenBabel, please make sure it is installed.

Note

export does not split any Synon data that was merged when the library was loaded.

References

Wohlgemuth G, Mehta SS, Mejia RF, Neumann S, Pedrosa D, Pluskal T, Schymanski EL, Willigha-
gen EL, Wilson M, Wishart DS, Arita M, Dorrestein PC, Bandeira N, Wang M, Schulze T, Salek
RM, Steinbeck C, Nainala VC, Mistrik R, Nishioka T, Fiehn O (2016). “SPLASH, a hashed identi-
fier for mass spectra.” Nature Biotechnology, 34(11), 1099–1101. doi:10.1038/nbt.3689.

Eddelbuettel D (2013). Seamless R and C++ Integration with Rcpp. Springer, New York. doi:10.1007/
9781461468684, ISBN 978-1-4614-6867-7.

Eddelbuettel D, Balamuta J (2018). “Extending R with C++: A Brief Introduction to Rcpp.” The
American Statistician, 72(1), 28-36. doi:10.1080/00031305.2017.1375990.

Eddelbuettel D, Francois R, Allaire J, Ushey K, Kou Q, Russell N, Ucar I, Bates D, Chambers J
(2025). Rcpp: Seamless R and C++ Integration. R package version 1.0.14, https://dirk.eddelbuettel.com/code/rcpp.html,
https://github.com/RcppCore/Rcpp, https://www.rcpp.org.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of Statistical
Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

OBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011). “Open
Babel: An open chemical toolbox.” Journal of Cheminformatics, 3(1). doi:10.1186/17582946333.

See Also

loadMSLibrary

https://github.com/openbabel/openbabel
https://doi.org/10.1038/nbt.3689
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1007/978-1-4614-6868-4
https://doi.org/10.1080/00031305.2017.1375990
https://www.rcpp.org
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1186/1758-2946-3-33

258 replicateGroupSubtract

replicateGroupSubtract

Filtering of grouped features

Description

Basic rule based filtering of feature groups.

Usage

replicateGroupSubtract(fGroups, rGroups, threshold = 0)

S4 method for signature 'featureGroups'
filter(

obj,
absMinIntensity = NULL,
relMinIntensity = NULL,
preAbsMinIntensity = NULL,
preRelMinIntensity = NULL,
absMinAnalyses = NULL,
relMinAnalyses = NULL,
absMinReplicates = NULL,
relMinReplicates = NULL,
absMinFeatures = NULL,
relMinFeatures = NULL,
absMinReplicateAbundance = NULL,
relMinReplicateAbundance = NULL,
absMinConc = NULL,
relMinConc = NULL,
absMaxTox = NULL,
relMaxTox = NULL,
absMinConcTox = NULL,
relMinConcTox = NULL,
maxReplicateIntRSD = NULL,
blankThreshold = NULL,
retentionRange = NULL,
mzRange = NULL,
mzDefectRange = NULL,
chromWidthRange = NULL,
featQualityRange = NULL,
groupQualityRange = NULL,
rGroups = NULL,
results = NULL,
removeBlanks = FALSE,
removeISTDs = FALSE,
checkFeaturesSession = NULL,
predAggrParams = getDefPredAggrParams(),

replicateGroupSubtract 259

removeNA = FALSE,
negate = FALSE

)

S4 method for signature 'featureGroupsSet'
filter(
obj,
...,
negate = FALSE,
sets = NULL,
absMinSets = NULL,
relMinSets = NULL

)

S4 method for signature 'featureGroups'
replicateGroupSubtract(fGroups, rGroups, threshold = 0)

Arguments

fGroups, obj featureGroups object to which the filter is applied.

rGroups A character vector of replicate groups that should be kept (filter) or subtracted
from (replicateGroupSubtract).

threshold Minimum relative threshold (compared to mean intensity of replicate group be-
ing subtracted) for a feature group to be not removed. When ‘0’ a feature group
is always removed when present in the given replicate groups.

absMinIntensity, relMinIntensity
Minimum absolute/relative intensity for features to be kept. The relative inten-
sity is determined from the feature with highest intensity (of all features from
all groups). Set to ‘0’ or NULL to skip this step.

preAbsMinIntensity, preRelMinIntensity
As absMinIntensity/relMinIntensity, but applied before any other filters.
This is typically used to speed-up subsequent filter steps. However, care must
be taken that a sufficiently low value is chosen that is not expected to affect
subsequent filtering steps. See below why this may be important.

absMinAnalyses, relMinAnalyses
Feature groups are only kept when they contain data for at least this (absolute or
relative) amount of analyses. Set to NULL to ignore.

absMinReplicates, relMinReplicates
Feature groups are only kept when they contain data for at least this (absolute or
relative) amount of replicates. Set to NULL to ignore.

absMinFeatures, relMinFeatures
Analyses are only kept when they contain at least this (absolute or relative)
amount of features. Set to NULL to ignore.

absMinReplicateAbundance, relMinReplicateAbundance
Minimum absolute/relative abundance that a grouped feature should be present
within a replicate group. If this minimum is not met all features within the
replicate group are removed. Set to NULL to skip this step.

260 replicateGroupSubtract

absMinConc, relMinConc
The minimum absolute/relative predicted concentration (calculated by calculateConcs)
assigned to a feature. The toxicities are first aggregated prior to filtering, as con-
trolled by the predAggrParams argument. Also see the removeNA argument.

absMaxTox, relMaxTox
The maximum absolute/relative predicted toxicity (LC50) (calculated by calculateTox)
assigned to a feature group. The concentrations are first aggregated prior to fil-
tering, as controlled by the predAggrParams argument. Also see the removeNA
argument.

absMinConcTox, relMinConcTox
Like absMinConc/relMinConc, but instead considers the ratio between feature
concentrations and the toxicity of the feature group. For instance, absMinConcTox=0.1
means that the calculated concentration of a feature should be at least ‘10%’ of
its toxicity.

maxReplicateIntRSD

Maximum relative standard deviation (RSD) of intensity values for features
within a replicate group. If the RSD is above this value all features within the
replicate group are removed. Set to NULL to ignore.

blankThreshold Feature groups that are also present in blank analyses (see analysis info) are
filtered out unless their relative intensity is above this threshold. For instance,
a value of ‘5’ means that only features with an intensity five times higher than
that of the blank are kept. The relative intensity values between blanks and non-
blanks are determined from the mean of all non-zero blank intensities. Set to
NULL to skip this step.

retentionRange, mzRange, mzDefectRange, chromWidthRange
Range of retention time (in seconds), m/z, mass defect (defined as the decimal
part of m/z values) or chromatographic peak width (in seconds), respectively.
Features outside this range will be removed. Should be a numeric vector with
length of two containing the min/max values. The maximum can be Inf to
specify no maximum range. Set to NULL to skip this step.

featQualityRange

Used to filter features by their peak qualities/scores (see calculatePeakQualities).
Should be a named list with min/max ranges for each quality/score to be fil-
tered (the featureQualityNames function can be used to obtain valid names).
Example: featQualityRange=list(ModalityScore=c(0.3, Inf),SymmetryScore=c(0.5,
Inf)). Set to NULL to ignore.

groupQualityRange

Like featQualityRange, but filters on group specific or averaged qualities/scores.

results Only keep feature groups that have results in the object specified by results.
Valid classes are featureAnnotations (e.g. formula/compound annotations)
and components. Can also be a list with multiple objects: in this case a feature
group is kept if it has a result in any of the objects. Set to NULL to ignore.

removeBlanks Set to TRUE to remove all analyses that belong to replicate groups that are spec-
ified as a blank in the analysis-information. This is useful to simplify the anal-
yses in the specified featureGroups object after blank subtraction. When both
blankThreshold and this argument are set, blank subtraction is performed prior
to removing any analyses.

replicateGroupSubtract 261

removeISTDs If TRUE then all feature groups marked as internal standard (IS) are removed.
This requires IS assignments done by normInts, see its documentation for more
details.

checkFeaturesSession

If set then features and/or feature groups are removed that were selected for
removal (see check-GUI). The session files are typically generated with the
checkFeatures and predictCheckFeaturesSession functions. The value of
checkFeaturesSession should either by a path to the session file or TRUE, in
which case the default session file name is used. If negate=TRUE then all non-
selected features/feature groups are removed instead.

predAggrParams Parameters to aggregate calculated concentrations/toxicities (obtained with calculateConcs/calculateTox)
prior to filtering data. See prediction aggregation parameters for more informa-
tion.

removeNA Set to TRUE to remove NA values. Currently only applicable to the concentration
and toxicity filters.

negate If set to TRUE then filtering operations are performed in opposite manner.

... For sets workflow methods: further arguments passed to the base featureGroups
method.

sets (sets workflow) A character with name(s) of the sets to keep (or remove if
negate=TRUE).

absMinSets, relMinSets
(sets workflow) Feature groups are only kept when they contain data for at least
this (absolute or relative) amount of sets. Set to NULL to ignore.

Details

filter performs common rule based filtering of feature groups such as blank subtraction, minimum
intensity and minimum replicate abundance. Removing of features occurs by zeroing their intensity
values. Furthermore, feature groups that are left completely empty (i.e. all intensities are zero) will
be automatically removed.

replicateGroupSubtract removes feature groups present in a given set of replicate groups (unless
intensities are above a given threshold). The replicate groups that are subtracted will be removed.

Value

A filtered featureGroups object. Feature groups that are filtered away have their intensity set to
zero. In case a feature group is not present in any of the analyses anymore it will be removed
completely.

Sets workflows

The following methods are changed or with new functionality:

• filter has specific arguments to filter by (feature presence in) sets. See the argument de-
scriptions.

262 report

Filter order

When multiple arguments are specified to filter, multiple filters are applied in sequence. Since
some of these filters may affect each other, choosing their order correctly may be important for
effective data filtering. For instance, when an intensity filter removes features from blank analyses,
a subsequent blank filter may not adequately perform blank subtraction. Similarly, when intensity
and blank filters are executed after the replicate abundance filter it may be necessary to ensure
minimum replicate abundance again as the intensity and blank filters may have removed some
features within a replicate group.

With this in mind, filters (if specified) occur in the following order:

1. Features/feature groups selected for removal by the session specified by checkFeaturesSession.

2. Pre-Intensity filters (i.e. preAbsMinIntensity and preRelMinIntensity).

3. Chromatography and mass filters (i.e retentionRange, mzRange, mzDefectRange, chromWidthRange,
featQualityRange and groupQualityRange).

4. Replicate abundance filters (i.e. absMinReplicateAbundance, relMinReplicateAbundance
and maxReplicateIntRSD).

5. Blank filter (i.e. blankThreshold).

6. Intensity filters (i.e. absMinIntensity and relMinIntensity).

7. Replicate abundance filters (2nd time, only if previous filters affected results).

8. General abundance filters (i.e. absMinAnalyses, relMinAnalyses, absMinReplicates, relMinReplicates,
absMinFeatures, relMinFeatures), absMinConc, relMinConc, absMaxTox and relMaxTox.

9. Replicate group filter (i.e. rGroups), results filter (i.e. results) and blank analyses / internal
standard removal (i.e. removeBlanks=TRUE / removeISTDs=TRUE).

If another filtering order is desired then filter should be called multiple times with only one filter
argument at a time.

See Also

featureGroups-class and groupFeatures

report Report workflow data

Description

Functionality to report data produced by most workflow steps such as features, feature groups,
formula and compound annotations, and TPs.

report 263

Usage

report(
fGroups,
MSPeakLists = NULL,
formulas = NULL,
compounds = NULL,
compsCluster = NULL,
components = NULL,
TPs = NULL,
settingsFile = system.file("report", "settings.yml", package = "patRoon"),
path = NULL,
EICParams = getDefEICParams(topMost = 1, topMostByRGroup = TRUE),
specSimParams = getDefSpecSimParams(),
clearPath = FALSE,
openReport = TRUE,
parallel = TRUE,
overrideSettings = list()

)

S4 method for signature 'featureGroups'
report(
fGroups,
MSPeakLists = NULL,
formulas = NULL,
compounds = NULL,
compsCluster = NULL,
components = NULL,
TPs = NULL,
settingsFile = system.file("report", "settings.yml", package = "patRoon"),
path = NULL,
EICParams = getDefEICParams(topMost = 1, topMostByRGroup = TRUE),
specSimParams = getDefSpecSimParams(),
clearPath = FALSE,
openReport = TRUE,
parallel = TRUE,
overrideSettings = list()

)

genReportSettingsFile(out = "report.yml", baseFrom = NULL)

Arguments

fGroups The featureGroups object that should be used for reporting data.
MSPeakLists, formulas, compounds, compsCluster, components, TPs

Further objects (MSPeakLists, formulas, compounds, compoundsCluster, components,
transformationProducts) that should be reported. Specify NULL to skip re-
porting a particular object. Note that MSPeakLists must be set if either formulas
or compounds is set.

264 report

settingsFile The path to the report settings file used for report configuration (see Report settings).

path The destination file path for files generated during reporting. Will be generated if
needed. If path=NULL then the destination path is taken from the report settings
(see below).

EICParams A named list with parameters used for extracted ion chromatogram (EIC) cre-
ation. See the EIC parameters documentation for more details.

specSimParams A named list with parameters that influence the calculation of MS spectra sim-
ilarities. See the spectral similarity parameters documentation for more details.

clearPath If TRUE then the report destination path will be (recursively) removed prior to
reporting.

openReport If set to TRUE then the output report file will be opened with the system browser.

parallel If set to TRUE then code is executed in parallel through the futures package.
Please see the parallelization section in the handbook for more details.

overrideSettings

A list with settings that override those from the report settings file. Example:
overrideSettings=list(compounds=list(topMost=25)).

out The output file path.

baseFrom An existing report file to which the report settings should be based from. This is
primarily used to update old settings files: the output settings file will be based
on the old settings and amended with any missing.

Details

The reporting functionality is typically used at the very end of the workflow. It is used to overview
the data generated during the workflow, such as features, their annotations and TP screening results.

report reports all workflow data in an interactive HTML file. The reports include both tabular data
(e.g. retention times, annotation properties, screening results) and varios plots (e.g. chromatograms,
(annotated) mass spectra and many more). This function uses functionality from other R packages,
such as rmarkdown, flexdashboard, knitr and bslib.

The genReportSettingsFile function generates a new template ‘YAML’ file to configure report
settings (see the next section).

Report settings

The report generation can be customized with a variety of settings that are read from a ‘YAML’ file.
This is especially useful if you want to change more advanced settings or want to add or remove the
parts that are reported The report settings file is specified through the settingsFile argument. If
not specified then default settings will be used. To ease creation of a new template settings file, the
genReportSettingsFile function can be used.

The following settings are currently available:

• General

– format: the report format. Currently this can only be "html".
– path: the destination path (ignored if the path argument is specified).
– keepUnusedPlots: the number of days that unused plot files are kept (see Plot file caching).

https://CRAN.R-project.org/package=futures
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=flexdashboard
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=bslib

report 265

– selfContained: If true then the output ‘report.html’ embeds all graphics and script
dependencies. Otherwise these files are read from the report_files/ directory. Self-
contained reports are easily shared, since only the ‘report.html’ needs to be copied.
However, they may be slower to generate and render, especially when the report contains
a lot of data.

– noDate Set to true to omit the date from the report. Mainly used for internal purposes.

• summary: defines the plots on the summary page: chord, venn and/or upset.

• features

– retMin: if true then retention times are reported in minutes.
– chromatograms

* large: inclusion of large chromatograms (used in feature group table and TP parent
chromatogram view).

* small: inclusion of small chromatograms (feature group table).

* features: inclusion of chromatograms for individual features (features view). Set to
all to also include plots for analyses in which a feature was not found (or removed
afterwards).

* intMax: Method to determine the maximum intensity plot range: eic or feature.
Sets the intMax argument to plotChroms.

– intensityPlots: inclusion of intensity trend plots.

• MSPeakLists

– spectra: inclusion of MS and MS/MS spectra (not annotated).

• formulas

– include: whether formula results are reported (formula view). If false then the input
formulas object is still used to amend e.g. compound annotated spectra.

– normalizeScores, exclNormScores: controls score normalization, sets the equally named
arguments to e.g. plotScores.

– topMost only report this number of top ranked candidates. This number can be lowered
to speed-up report generation.

• compounds

– normalizeScores, exclNormScores, topMost: same as formulas, see above.

• TPs

– graphs: inclusion of TP hierarchy graphs (generated with plotGraph).
– graphStructuresMax: maximum number of structures to plot in hierarchy graphs (sets
structuresMax argument of plotGraph).

• internalStandards

– graph: inclusion of internal standard network plot (plotGraph).

Plot file caching

When a new report is generated the plot files are stored inside the report_files sub-directory
inside the destination path of the report. The plot files are kept so they can be reused to speed-up re-
creation of reports (e.g. with different report settings). After the report is generated, any unused plot
files are removed unless they were recently created (controlled by the keepUnusedPlots setting,
see previous section). The clearPath argument can be used to completely remove any old files.

266 reportCSV

Note

No data will be reported for feature groups in any of the reported objects (formulas, compounds
etc) which are not present in the input featureGroups object (fGroups).

The topMost, topMostByRGroup and onlyPresent EIC parameters may be ignored, e.g., when
generating overview plots.

References

Creating MetFrag landing page URLs based on code from MetFamily R package.

Xie Y (2014). “knitr: A Comprehensive Tool for Reproducible Research in R.” In Stodden V,
Leisch F, Peng RD (eds.), Implementing Reproducible Computational Research. Chapman and
Hall/CRC. ISBN 978-1466561595.

Xie Y (2015). Dynamic Documents with R and knitr, 2nd edition. Chapman and Hall/CRC, Boca
Raton, Florida. ISBN 978-1498716963, https://yihui.org/knitr/.

Xie Y (2025). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package
version 1.50, https://yihui.org/knitr/.

reportCSV Report feature group data (legacy interface)

Description

Functionality to report data produced by most workflow steps such as features, feature groups,
calculated chemical formulae and tentatively identified compounds. This is the legacy interface, for
the updated interface see reporting.

Usage

reportCSV(
fGroups,
path = "report",
reportFeatures = FALSE,
formulas = NULL,
formulasNormalizeScores = "max",
formulasExclNormScores = NULL,
compounds = NULL,
compoundsNormalizeScores = "max",
compoundsExclNormScores = c("score", "individualMoNAScore", "annoTypeCount",
"annotHitCount", "libMatch"),

compsCluster = NULL,
components = NULL,
retMin = TRUE,
clearPath = FALSE

https://github.com/Treutler/MetFamily
https://yihui.org/knitr/
https://yihui.org/knitr/

reportCSV 267

)

reportPDF(
fGroups,
path = "report",
reportFGroups = TRUE,
formulas = NULL,
formulasTopMost = 5,
formulasNormalizeScores = "max",
formulasExclNormScores = NULL,
reportFormulaSpectra = TRUE,
compounds = NULL,
compoundsNormalizeScores = "max",
compoundsExclNormScores = c("score", "individualMoNAScore", "annoTypeCount",
"annotHitCount", "libMatch"),

compoundsOnlyUsedScorings = TRUE,
compoundsTopMost = 5,
compsCluster = NULL,
components = NULL,
MSPeakLists = NULL,
retMin = TRUE,
EICGrid = c(2, 1),
EICParams = getDefEICParams(rRtWindow = 20, topMost = 1, topMostByRGroup = TRUE),
clearPath = FALSE

)

reportHTML(
fGroups,
path = "report",
reportPlots = c("chord", "venn", "upset", "eics", "formulas"),
formulas = NULL,
formulasTopMost = 5,
formulasNormalizeScores = "max",
formulasExclNormScores = NULL,
compounds = NULL,
compoundsNormalizeScores = "max",
compoundsExclNormScores = c("score", "individualMoNAScore", "annoTypeCount",
"annotHitCount", "libMatch"),

compoundsOnlyUsedScorings = TRUE,
compoundsTopMost = 5,
compsCluster = NULL,
includeMFWebLinks = "compounds",
components = NULL,
interactiveHeat = FALSE,
MSPeakLists = NULL,
specSimParams = getDefSpecSimParams(),
TPs = NULL,
retMin = TRUE,

268 reportCSV

EICParams = getDefEICParams(rtWindow = 20, topMost = 1, topMostByRGroup = TRUE),
TPGraphStructuresMax = 25,
selfContained = TRUE,
optimizePng = FALSE,
clearPath = FALSE,
openReport = TRUE,
noDate = FALSE

)

S4 method for signature 'featureGroups'
reportCSV(
fGroups,
path = "report",
reportFeatures = FALSE,
formulas = NULL,
formulasNormalizeScores = "max",
formulasExclNormScores = NULL,
compounds = NULL,
compoundsNormalizeScores = "max",
compoundsExclNormScores = c("score", "individualMoNAScore", "annoTypeCount",
"annotHitCount", "libMatch"),

compsCluster = NULL,
components = NULL,
retMin = TRUE,
clearPath = FALSE

)

S4 method for signature 'featureGroups'
reportPDF(
fGroups,
path = "report",
reportFGroups = TRUE,
formulas = NULL,
formulasTopMost = 5,
formulasNormalizeScores = "max",
formulasExclNormScores = NULL,
reportFormulaSpectra = TRUE,
compounds = NULL,
compoundsNormalizeScores = "max",
compoundsExclNormScores = c("score", "individualMoNAScore", "annoTypeCount",
"annotHitCount", "libMatch"),

compoundsOnlyUsedScorings = TRUE,
compoundsTopMost = 5,
compsCluster = NULL,
components = NULL,
MSPeakLists = NULL,
retMin = TRUE,
EICGrid = c(2, 1),

reportCSV 269

EICParams = getDefEICParams(),
clearPath = FALSE

)

S4 method for signature 'featureGroups'
reportHTML(
fGroups,
path = "report",
reportPlots = c("chord", "venn", "upset", "eics", "formulas"),
formulas = NULL,
formulasTopMost = 5,
formulasNormalizeScores = "max",
formulasExclNormScores = NULL,
compounds = NULL,
compoundsNormalizeScores = "max",
compoundsExclNormScores = c("score", "individualMoNAScore", "annoTypeCount",
"annotHitCount", "libMatch"),

compoundsOnlyUsedScorings = TRUE,
compoundsTopMost = 5,
compsCluster = NULL,
includeMFWebLinks = "compounds",
components = NULL,
interactiveHeat = FALSE,
MSPeakLists = NULL,
specSimParams = getDefSpecSimParams(),
TPs = NULL,
retMin = TRUE,
EICParams = getDefEICParams(rtWindow = 20, topMost = 1, topMostByRGroup = TRUE),
TPGraphStructuresMax = 25,
selfContained = TRUE,
optimizePng = FALSE,
clearPath = FALSE,
openReport = TRUE,
noDate = FALSE

)

Arguments

fGroups The featureGroups object that should be used for reporting data.

path The destination file path for files generated during reporting. Will be generated
if needed.

reportFeatures If set to TRUE then for each analysis a ‘.csv’ file will be generated with infor-
mation about its detected features.

formulas, compounds, compsCluster, components
Further objects (formulas, compounds, compoundsCluster, components) that
should be reported. Specify NULL to skip reporting a particular object.

compoundsNormalizeScores, formulasNormalizeScores
A character that specifies how normalization of annotation scorings occurs.

270 reportCSV

Either "none" (no normalization), "max" (normalize to max value) or "minmax"
(perform min-max normalization). Note that normalization of negative scores
(e.g. output by SIRIUS) is always performed as min-max. Furthermore, cur-
rently normalization for compounds takes the original min/max scoring values
into account when candidates were generated. Thus, for compounds scoring,
normalization is not affected when candidate results were removed after they
were generated (e.g. by use of filter).

compoundsExclNormScores, formulasExclNormScores
A character vector specifying any compound scoring names that should not be
normalized. Set to NULL to normalize all scorings. Note that whether any nor-
malization occurs is set by the compoundsExclNormScores,formulasExclNormScores
argument.
For compounds: By default score and individualMoNAScore are set to mimic
the behavior of the MetFrag web interface.

retMin If TRUE then report retention times in minutes (otherwise seconds).

clearPath If TRUE then the destination path will be (recursively) removed prior to reporting.

reportFGroups If TRUE then feature group data will be reported.
formulasTopMost, compoundsTopMost

Only this amount of top ranked candidate formulae/compounds are reported.
Lower values may significantly speed up reporting. Set to NULL to ignore.

reportFormulaSpectra

If TRUE then explained MS/MS spectra (if available) for candidate formulae will
be reported. Specifying formulas and setting this argument to FALSE still allows
further annotation of compound MS/MS spectra.

compoundsOnlyUsedScorings

If TRUE then only scorings are plotted that actually have been used to rank data
(see the scoreTypes argument to generateCompoundsMetFrag for more de-
tails).

MSPeakLists A MSPeakLists object that is mandatory when spectra for formulae and/or com-
pounds will be reported.

EICGrid An integer vector in the form c(columns, rows) that is used to determine the
plotting grid when reporting EICs in PDF files.

EICParams A named list with parameters used for extracted ion chromatogram (EIC) cre-
ation. See the EIC parameters documentation for more details.

reportPlots A character vector specifying what should be plotted. Valid options are: "chord",
"venn", "upset" (plot a chord, Venn and UpSet diagram, respectively), "eics"
(plot EICs for individual feature groups) and "formulas" (plot annotated for-
mula spectra). Set to "none" to plot none of these.

includeMFWebLinks

A character specifying to which feature groups a web link should be added
in the annotation page to MetFragWeb. Options are: "compounds" (only to
those with compounds results), "MSMS" (only to those with MSMS peak lists) or
"none".

interactiveHeat

If TRUE an interactive heatmap HTML widget will be generated to display hier-
archical clustering results. Set to FALSE for a ’regular’ static plot.

https://msbi.ipb-halle.de/MetFragBeta/index.xhtml

reportCSV 271

specSimParams A named list with parameters that influence the calculation of MS spectra sim-
ilarities. See the spectral similarity parameters documentation for more details.

TPs A transformationProducts object that should used for plotting hierarchies.
Ignored if TPs=NULL or components is not a componentsTPs object.

TPGraphStructuresMax

Maximum number of TP structures to plot in TP hierarchies, see the TPs argu-
ment. Sets the structuresMax argument to plotGraph.

selfContained If TRUE the output will be a standalone HTML file which contains all graphics
and script dependencies. When FALSE, the latter will be placed in an additional
directory (‘report_files’) which should remain present when viewing the out-
put file. Especially on Windows, a non-self contained output might be desirable
when reporting large amounts of data to prevent pandoc from running out of
memory.

optimizePng If TRUE then pngquant is used to reduce the size of generated graphics. A sig-
nificant reduction in disk space usage may be seen, however, at the cost addi-
tional processing time. Multiple pngquant processes will be executed in paral-
lel, which can be configured with ‘patRoon.MP.maxProcs’ (parallelization will
always happen with the "classic" method, see patRoon options).

openReport If set to TRUE then the output report file will be opened with the system browser.

noDate If TRUE then the current date is not added to the report. This is mainly used for
testing and its main purpose is to guarantees equal report files when reportHTML()
is called multiple times with equal arguments.

Details

These functions are usually called at the very end of the workflow. It is used to report various data
on features and feature groups. In addition, these functions may be used for reporting formulae
and/or compounds that were generated for the specified feature groups. Data can be reported in
tabular form (i.e. ‘.csv’ files) by reportCSV or graphically by reportPDF and reportHTML. The
latter functions will plot for instance chromatograms and annotated mass spectra, which are useful
to get a graphical overview of results.

All functions have a wide variety of arguments that influence the reporting process. Nevertheless,
most parameters are optional and only required to be given for fine tuning. In addition, only those
objects (e.g. formulae, compounds, clustering) that are desired to be reported need to be specified.

reportCSV generates tabular data (i.e. ‘.csv’ files) for given data to be reported. This may also be
useful to allow import by other tools for post processing.

reportPDF will report graphical data (e.g. chromatograms and mass spectra) within PDF files.
Compared to reportHTML this function may be faster and yield smaller report files, however, its
functionality is a bit more basic and generated data is more ’scattered’ around.

reportHTML will report graphical data (e.g. chromatograms and mass spectra) and summary infor-
mation in an easy browsable HTML file using rmarkdown, flexdashboard and knitr.

Parallelization

reportHTML uses multiprocessing to parallelize computations. Please see the parallelization section
in the handbook for more details and patRoon options for configuration options.

272 screenInfo

Currently, reportHTML only uses "classic" multiprocessing, regardless of the ‘patRoon.MP.method’
option.

Note

Any formulae and compounds for feature groups which are not present within fGroups (i.e. because
it has been subset afterwards) will not be reported.

The topMost, topMostByRGroup and onlyPresent EIC parameters may be ignored, e.g., when
generating overview plots.

References

Creating MetFrag landing page URLs based on code from MetFamily R package.

Xie Y (2014). “knitr: A Comprehensive Tool for Reproducible Research in R.” In Stodden V,
Leisch F, Peng RD (eds.), Implementing Reproducible Computational Research. Chapman and
Hall/CRC. ISBN 978-1466561595.

Xie Y (2015). Dynamic Documents with R and knitr, 2nd edition. Chapman and Hall/CRC, Boca
Raton, Florida. ISBN 978-1498716963, https://yihui.org/knitr/.

Xie Y (2025). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package
version 1.50, https://yihui.org/knitr/.

See Also

reporting

screenInfo Class for suspect screened feature groups.

Description

This class derives from featureGroups and adds suspect screening information.

Usage

screenInfo(obj)

annotateSuspects(
fGroups,
MSPeakLists = NULL,
formulas = NULL,
compounds = NULL,
...

)

https://github.com/Treutler/MetFamily
https://yihui.org/knitr/
https://yihui.org/knitr/

screenInfo 273

S4 method for signature 'featureGroupsScreening'
screenInfo(obj)

S4 method for signature 'featureGroupsScreening'
show(object)

S4 method for signature 'featureGroupsScreening,ANY,ANY,missing'
x[i, j, ..., rGroups, suspects = NULL, drop = TRUE]

S4 method for signature 'featureGroupsScreening'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'featureGroupsScreening'
as.data.table(x, ..., collapseSuspects = ",", onlyHits = FALSE)

S4 method for signature 'featureGroupsScreening'
annotateSuspects(
fGroups,
MSPeakLists,
formulas,
compounds,
absMzDev = 0.005,
specSimParams = getDefSpecSimParams(removePrecursor = TRUE),
checkFragments = c("mz", "formula", "compound"),
formulasNormalizeScores = "max",
compoundsNormalizeScores = "max",
IDFile = system.file("misc", "IDLevelRules.yml", package = "patRoon"),
logPath = file.path("log", "ident")

)

S4 method for signature 'featureGroupsScreening'
filter(
obj,
...,
onlyHits = NULL,
selectHitsBy = NULL,
selectBestFGroups = FALSE,
maxLevel = NULL,
maxFormRank = NULL,
maxCompRank = NULL,
minAnnSimForm = NULL,
minAnnSimComp = NULL,
minAnnSimBoth = NULL,
absMinFragMatches = NULL,
relMinFragMatches = NULL,
minRF = NULL,
maxLC50 = NULL,
negate = FALSE

274 screenInfo

)

S4 method for signature 'featureGroupsScreeningSet'
screenInfo(obj)

S4 method for signature 'featureGroupsScreeningSet'
show(object)

S4 method for signature 'featureGroupsScreeningSet,ANY,ANY,missing'
x[i, j, ..., rGroups, suspects = NULL, sets = NULL, drop = TRUE]

S4 method for signature 'featureGroupsScreeningSet'
delete(obj, i = NULL, j = NULL, ...)

S4 method for signature 'featureGroupsScreeningSet'
as.data.table(x, ..., collapseSuspects = ",", onlyHits = FALSE)

S4 method for signature 'featureGroupsScreeningSet'
annotateSuspects(
fGroups,
MSPeakLists,
formulas,
compounds,
absMzDev = 0.005,
specSimParams = getDefSpecSimParams(removePrecursor = TRUE),
checkFragments = c("mz", "formula", "compound"),
formulasNormalizeScores = "max",
compoundsNormalizeScores = "max",
IDFile = system.file("misc", "IDLevelRules.yml", package = "patRoon"),
logPath = file.path("log", "ident")

)

S4 method for signature 'featureGroupsScreeningSet'
filter(
obj,
...,
onlyHits = NULL,
selectHitsBy = NULL,
selectBestFGroups = FALSE,
maxLevel = NULL,
maxFormRank = NULL,
maxCompRank = NULL,
minAnnSimForm = NULL,
minAnnSimComp = NULL,
minAnnSimBoth = NULL,
absMinFragMatches = NULL,
relMinFragMatches = NULL,
minRF = NULL,

screenInfo 275

maxLC50 = NULL,
negate = FALSE

)

S4 method for signature 'featureGroupsScreeningSet'
unset(obj, set)

Arguments

obj, object, x, fGroups
The featureGroupsScreening object.

MSPeakLists, formulas, compounds
Annotation data (MSPeakLists, formulas and compounds) obtained for this
featureGroupsScreening object. All arguments can be NULL to exclude it
from the annotation.

... Further arguments passed to the base method.

i, j, rGroups Used for subsetting data analyses, feature groups and replicate groups, see featureGroups.

suspects An optional character vector with suspect names. If specified, only featureGroups
will be kept that are assigned to these suspects.

drop Ignored.
collapseSuspects

If a character then any suspects that were matched to the same feature group
are collapsed to a single row and suspect names are separated by the value of
collapseSuspects. If NULL then no collapsing occurs, and each suspect match
is reported on a single row. See the Suspect collapsing section below for
additional details.

onlyHits For as.data.table: if TRUE then only feature groups with suspect hits are re-
ported.
For filter

• if negate=FALSE and onlyHits=TRUE then all feature groups without sus-
pect hits will be removed. Otherwise nothing will be done.

• if negate=TRUE then onlyHits=TRUE will select feature groups without
suspect hits, onlyHits=FALSE will only retain feature groups with suspect
matches and this filter is ignored if onlyHits=NULL.

absMzDev Maximum absolute m/z deviation.

specSimParams A named list with parameters that influence the calculation of MS spectra sim-
ilarities. See the spectral similarity parameters documentation for more details.

checkFragments Which type(s) of MS/MS fragments from workflow data should be checked to
evaluate the number of suspect fragment matches (i.e. from the fragments_mz/fragments_formula
columns in the suspect list). Valid values are: "mz", "formula", "compounds".
The former uses m/z values in the specified MSPeakLists object, whereas the
others use the formulae that were annotated to MS/MS peaks in the given formulas
or compounds objects. Multiple values are possible: in this case the maximum
number of fragment matches will be reported.

276 screenInfo

compoundsNormalizeScores, formulasNormalizeScores
A character that specifies how normalization of annotation scorings occurs.
Either
"max" (normalize to max value) or "minmax" (perform min-max normalization).
Note that normalization of negative scores (e.g. output by SIRIUS) is always per-
formed as min-max. Furthermore, currently normalization for compounds takes
the original min/max scoring values into account when candidates were gener-
ated. Thus, for compounds scoring, normalization is not affected when candidate
results were removed after they were generated (e.g. by use of filter).

IDFile A file path to a YAML file with rules used for estimation of identification levels.
See the Suspect annotation section for more details. If not specified then a
default rules file will be used.

logPath A directory path to store logging information. If NULL then logging is disabled.
selectHitsBy Should be "intensity" or "level". For cases where the same suspect is

matched to multiple feature groups, only the suspect to the feature group with
highest mean intensity (selectHitsBy="intensity") or best identification level
(selectHitsBy="level") is kept. In case of ties only the first hit is kept. Set to
NULL to ignore this filter. If negate=TRUE then only those hits with lowest mean
intensity/poorest identification level are kept.

selectBestFGroups

If TRUE then for any cases where a single feature group is matched to several
suspects only the suspect assigned to the feature group with best identification
score is kept. In case of ties only the first is kept.

maxLevel, maxFormRank, maxCompRank, minAnnSimForm, minAnnSimComp,
minAnnSimBoth

Filter suspects by maximum identification level (e.g. "3a"), formula/compound
rank or with minimum formula/compound/combined annotation similarity. Set
to NULL to ignore.

absMinFragMatches, relMinFragMatches
Only retain suspects with this minimum number MS/MS matches with the frag-
ments specified in the suspect list (i.e. fragments_mz/fragments_formula).
relMinFragMatches sets the minimum that is relative (‘0-1’) to the maximum
number of MS/MS fragments specified in the fragments_* columns of the sus-
pect list. Set to NULL to ignore.

minRF Filter suspect hits by the given minimum predicted response factor (as calculated
by predictRespFactors). Set to NULL to ignore.

maxLC50 Filter suspect hits by the given maximum toxicity (LC50) (as calculated by
predictTox). Set to NULL to ignore.

negate If set to TRUE then filtering operations are performed in opposite manner.
sets (sets workflow) A character with name(s) of the sets to keep (or remove if

negate=TRUE).
set (sets workflow) The name of the set.

Value

annotateSuspects returns a featureGroupsScreening object, which is a featureGroups object
amended with annotation data.

screenInfo 277

filter returns a filtered featureGroupsScreening object.

Methods (by generic)

• screenInfo(featureGroupsScreening): Returns a table with screening information (see
screenInfo slot).

• show(featureGroupsScreening): Shows summary information for this object.

• x[i: Subset on analyses, feature groups and/or suspects.

• as.data.table(featureGroupsScreening): Obtain a summary table (a data.table) with
retention, m/z, intensity and optionally other feature data. Furthermore, the output table will
be merged with information from screenInfo, such as suspect names and other properties
and annotation data.

• annotateSuspects(featureGroupsScreening): Incorporates annotation data obtained dur-
ing the workflow to annotate suspects with matched known MS/MS fragments, formula/candidate
ranks and automatic estimation of identification levels. See the Suspect annotation section
for more details. The estimation of identification levels for each suspect is logged in the
log/ident directory.

• filter(featureGroupsScreening): Performs rule based filtering. This method builds on
the comprehensive filter functionality from the base filter,featureGroups-method. It
adds several filters to select e.g. the best ranked suspects or those with a minimum esti-
mated identification level. NOTE: most filters only affect suspect hits, not feature groups. Set
onlyHits=TRUE to subsequently remove any feature groups that lost any suspect matches due
to other filter steps.

Slots

screenInfo A (data.table) with results from suspect screening. This table will be amended with
annotation data when annotateSuspects is run.

MS2QuantMeta Metadata from MS2Quant filled in by predictRespFactors.

Suspect annotation

The annotateSuspects method is used to annotate suspects after screenSuspects was used to
collect suspect screening results and other workflow steps such as formula and compound annota-
tion steps have been completed. The annotation results, which can be acquired with the as.data.table
and screenInfo methods, amends the current screening data with the following columns:

• formRank,compRank The rank of the suspect within the formula/compound annotation results.

• annSimForm,annSimComp,annSimBoth A similarity measure between measured and annotated
MS/MS peaks from annotation of formulae, compounds or both. The similarity is calculated
as the spectral similarity between a peaklist with (a) all MS/MS peaks and (b) only annotated
peaks. Thus, a value of one means that all MS/MS peaks were annotated. If both formula
and compound annotations are available then annSimBoth is calculated after combining all
the annotated peaks, otherwise annSimBoth equals the available value for annSimForm or
annSimComp. The similarity calculation can be configured with the specSimParams argu-
ment to annotateSuspects. Note for annotation with generateCompoundsLibrary results:
the method and default parameters for annSimComp calculation slightly differs to those from

278 screenInfo

the spectral similarity calculated with compound annotation (libMatch score), hence small
differences in results are typically observed.

• maxFrags The maximum number of MS/MS fragments that can be matched for this suspect
(based on the fragments_* columns from the suspect list).

• maxFragMatches,maxFragMatchesRel The absolute and relative amount of experimental MS/MS
peaks that were matched from the fragments specified in the suspect list. The value for
maxFragMatchesRel is relative to the value for maxFrags. The calculation of this column
is influenced by the checkFragments argument to annotateSuspects.

• estIDLevel Provides an estimation of the identification level, roughly following that of (Schy-
manski et al. 2014). However, please note that this value is only an estimation, and manual
interpretation is still necessary to assign final identification levels. The estimation is done
through a set of rules, see the Identification level rules section below.

Note that only columns are present if sufficient data is available for their calculation.

Identification level rules

The estimation of identification levels is configured through a YAML file which specifies the rules
for each level. The default file is shown below.

1:
suspectFragments: 3
retention: 12

2a:
or:

- individualMoNAScore:
min: 0.9
higherThanNext: .inf

- libMatch:
min: 0.9
higherThanNext: .inf

rank:
max: 1
type: compound

3a:
or:

- individualMoNAScore: 0.4
- libMatch: 0.4

3b:
suspectFragments: 3

3c:
annMSMSSim:

type: compound
min: 0.7

4a:
annMSMSSim:

type: formula
min: 0.7

screenInfo 279

isoScore:
min: 0.5
higherThanNext: 0.2

rank:
max: 1
type: formula

4b:
isoScore:

min: 0.9
higherThanNext: 0.2

rank:
max: 1
type: formula

5:
all: yes

Most of the file should be self-explanatory. Some notes:

• Each rule is either a field of suspectFragments (minimum number of MS/MS fragments
matched from suspect list), retention (maximum retention deviation from suspect list), rank
(the maximum annotation rank from formula or compound annotations), all (this level is
always matched) or any of the scorings available from the formula or compound annotations.

• In case any of the rules could be applied to either formula or compound annotations, the
annotation type must be specified with the type field (formula or compound).

• Identification levels should start with a number and may optionally be followed by a alphabetic
character. The lowest levels are checked first.

• If relative=yes then the relative scoring will be used for testing.

• For suspectFragments: if the number of fragments from the suspect list (maxFrags column)
is less then the minimum rule value, the minimum is adjusted to the number of available
fragments.

• The or and and keywords can be used to combine multiple conditions.

A template rules file can be generated with the genIDLevelRulesFile function, and this file can
subsequently passed to annotateSuspects. The file format is highly flexible and (sub)levels can
be added or removed if desired. Note that the default file is currently only suitable when annotation
is performed with GenForm and MetFrag, for other algorithms it is crucial to modify the rules.

S4 class hierarchy

• featureGroups

– featureGroupsScreening

* featureGroupsSetScreeningUnset

Suspect collapsing

The as.data.table method fir featureGroupsScreening supports an additional format where
each suspect hit is reported on a separate row (enabled by setting collapseSuspects=NULL). In

280 screenInfo

this format the suspect properties from the screenInfo method are merged with each suspect row.
Alternatively, if suspect collapsing is enabled (the default) then the regular as.data.table format
is used, and amended with the names of all suspects matched to a feature group (separated by the
value of the collapseSuspects argument).

Suspect collapsing also influences how calculated feature concentrations/toxicities are reported (i.e.
obtained with calculateConcs/calculateTox). If these values were directly predicted for sus-
pects, i.e. by using predictRespFactors/predictTox on the feature groups object, and suspects
are not collapsed, then the calculated concentration/toxicity reported for each suspect row is not
aggregated and specific for that suspect (unless not available). Hence, this allows you to obtain
specific concentration/toxicity values for each suspect/feature group pair.

Sets workflows

The featureGroupsScreeningSet class is applicable for sets workflows. This class is derived
from featureGroupsScreening and therefore largely follows the same user interface.

The following methods are specifically defined for sets workflows:

• All the methods from base class workflowStepSet.

• unset Converts the object data for a specified set into a ’non-set’ object (featureGroupsScreeningUnset),
which allows it to be used in ’regular’ workflows. Only the screening results present in the
specified set are kept.

The following methods are changed or with new functionality:

• annotateSuspects Suspect annotation is performed per set. Thus, formula/compound ranks,
estimated identification levels etc are calculated for each set. Subsequently, these results are
merged in the final screenInfo. In addition, an overall formRank and compRank column is
created based on the rankings of the suspect candidate in the set consensus data. Furthermore,
an overall estIDLevel is generated that is based on the ’best’ estimated identification level
among the sets data (i.e. the lowest). In case there is a tie between sub-levels (e.g. ‘3a’ and
‘3b’), then the sub-level is stripped (e.g. ‘3’).

• filter All filters related to estimated identification levels and formula/compound rankings
are applied to the overall set data (see above). All others are applied to set specific data: in
this case candidates are only removed if none of the set data confirms to the filter.

This class derives also from featureGroupsSet. Please see its documentation for more relevant
details with sets workflows.

Note that the formRank and compRank columns are not updated when the data is subset.

Note

filter removes suspect hits with NA values when any of the filters related to minimum or maximum
values are applied (unless negate=TRUE).

Author(s)

Rick Helmus <<r.helmus@uva.nl>>, Emma Schymanski <<emma.schymanski@uni.lu>> (con-
tributions to identification level rules), Bas van de Velde (contributions to spectral similarity calcu-
lation).

screenSuspects 281

References

Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014). “Identifying
Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence.” Environ-
mental Science and Technology, 48(4), 2097–2098. doi:10.1021/es5002105.

Stein SE, Scott DR (1994). “Optimization and testing of mass spectral library search algorithms for
compound identification.” Journal of the American Society for Mass Spectrometry, 5(9), 859–866.
doi:10.1016/10440305(94)870098.

See Also

featureGroups

screenSuspects Target and suspect screening

Description

Utilities to screen for analytes with known or suspected identity.

Usage

screenSuspects(
fGroups,
suspects,
rtWindow = 12,
mzWindow = 0.005,
adduct = NULL,
skipInvalid = TRUE,
prefCalcChemProps = TRUE,
neutralChemProps = FALSE,
onlyHits = FALSE,
...

)

S4 method for signature 'featureGroups'
screenSuspects(
fGroups,
suspects,
rtWindow,
mzWindow,
adduct,
skipInvalid,
prefCalcChemProps,
neutralChemProps,
onlyHits

)

https://doi.org/10.1021/es5002105
https://doi.org/10.1016/1044-0305%2894%2987009-8

282 screenSuspects

S4 method for signature 'featureGroupsScreening'
screenSuspects(
fGroups,
suspects,
rtWindow,
mzWindow,
adduct,
skipInvalid,
onlyHits,
amend = FALSE

)

numericIDLevel(level)

genIDLevelRulesFile(out, inLevels = NULL, exLevels = NULL)

S4 method for signature 'featureGroupsSet'
screenSuspects(
fGroups,
suspects,
rtWindow,
mzWindow,
adduct,
skipInvalid,
prefCalcChemProps,
neutralChemProps,
onlyHits

)

S4 method for signature 'featureGroupsScreeningSet'
screenSuspects(
fGroups,
suspects,
rtWindow,
mzWindow,
adduct,
skipInvalid,
prefCalcChemProps,
neutralChemProps,
onlyHits,
amend = FALSE

)

Arguments

fGroups The featureGroups object that should be screened.

suspects A data.frame with suspect information. See the Suspect list format section

screenSuspects 283

below.
(sets workflow) Can also be a list with suspect lists to be used for each set
(otherwise the same suspect lists is used for all sets). The list can be named
with the sets names to mark which suspect list is to be used with which set (e.g.
suspects=list(positive=suspsPos, negative=suspsNeg)).

rtWindow, mzWindow
The retention time window (in seconds) and m/z window that will be used for
matching a suspect (+/- feature data).

adduct An adduct object (or something that can be converted to it with as.adduct).
Examples: "[M-H]-", "[M+Na]+". May be NULL, see Suspect list format
and Matching
of suspect masses sections below.

skipInvalid If set to TRUE then suspects with invalid data (e.g. missing names or other miss-
ing data) will be ignored with a warning. Similarly, any suspects for which mass
calculation failed (when no mz column is present in the suspect list), for instance,
due to invalid SMILES, will be ignored with a warning.

prefCalcChemProps

If TRUE then calculated chemical properties such as the formula and INCHIKEY
are preferred over what is already present in the suspect list. For efficiency rea-
sons it is recommended to set this to TRUE. See the Validating and calculating chemical properties
section for more details.

neutralChemProps

If TRUE then the neutral form of the molecule is considered to calculate SMILES,
formulae etc. Enabling this may improve feature matching when considering
common adducts (e.g. [M+H]+, [M-H]-). See the Validating and calculating chemical properties
section for more details.

onlyHits If TRUE then all feature groups not matched by any of the suspects will be re-
moved.

... Further arguments specified to the methods.

amend If TRUE then screening results will be amended to the original object.

level The identification level to be converted.

out The file path to the target file.
inLevels, exLevels

A regular expression for the identification levels to include or exclude, respec-
tively. For instance, exLevels="4|5" would exclude level 4 and 5 from the
output file. Set to NULL to ignore.

Details

Besides ’full non-target analysis’, where compounds may be identified with little to no prior knowl-
edge, a common strategy is to screen for compounds with known or suspected identity. This may
be a generally favorable approach if possible, as it can significantly reduce the load on data inter-
pretation.

screenSuspects is used to perform suspect screening. The input featureGroups object will be
screened for suspects by m/z values and optionally retention times. Afterwards, any feature groups
not matched may be kept or removed, depending whether a full non-target analysis is desired.

284 screenSuspects

numericIDLevel Extracts the numeric part of a given identification level (e.g. "3a" becomes ‘3’).

genIDLevelRulesFile Generates a template YAML file that is used to configure the rules for auto-
matic estimation of identification levels. This file can then be used as input for annotateSuspects.

Value

screenSuspects returns a featureGroupsScreening object, which is a copy of the input fGroups
object amended with additional screening information.

Sets workflows

In a sets workflow, screenSuspects performs suspect screening for each set separately, and the
screening results are combined afterwards. The sets column in the screenInfo data marks in
which sets the suspect hit was found.

Suspect list format

the suspects argument for screenSuspects should be a data.frame with the following manda-
tory and optional columns:

• name The suspect name. Must be file-compatible. (mandatory)

• rt The retention time (in seconds) for the suspect. If specified the suspect will only be matched
if its retention matches the experimental value (tolerance defined by the rtWindow argument).
(optional)

• neutralMass,formula,SMILES,InChI The neutral monoisotopic mass, chemical formula, SMILES
or InChI for the suspect. (data from one of these columns are mandatory in case no value
from the mz column is available for a suspect)

• mz The ionized m/z of the suspect. (mandatory unless it can be calculated from one of the
aforementioned columns)

• adduct A character that can be converted with as.adduct. Can be used to automatically
calculate values for the mz column. (mandatory unless data from the mz column is available,
the adduct argument is set or fGroups has adduct annotations)

• fragments_mz,fragments_formula One or more MS/MS fragments (specified as m/z or for-
mulae, respectively). Multiple values can be specified by separating them with a semicolon
(;). This data is used by annotateSuspects to report detected MS/MS fragments and calcu-
late identification levels. (optional)

Matching of suspect masses

How the mass of a suspect is matched with the mass of a feature depends on the available data:

• If the suspect has data from the mz column of the suspect list, then this data is matched with
the detected feature m/z.

• Otherwise, if the suspect has data in the adduct column of the suspect list, this data is used to
calculate its mz value, which is then used like above.

• In the last case, the neutral mass of the suspect is matched with the neutral mass of the feature.
Hence, either the adduct argument needs to be specified, or the featureGroups input object
must have adduct annotations.

sets-workflow 285

Validating and calculating chemical properties

Chemical properties such as SMILES, INCHIKEY and formula in the suspect list are automatically
validated and calculated if missing/invalid.

The internal validation/calculation process performs the following steps:

• Validation of SMILES, INCHI, INCHIKEY and formula data (if present). Invalid entries will be
set to NA.

• If neutralChemProps=TRUE then chemical data (SMILES, formulae etc.) is neutralized by
(de-)protonation (using the --neutralized option of OpenBabel). An additional column
molNeutralized is added to mark those molecules that were neutralized. Note that neutral-
ization requires either SMILES or INCHI data to be available.

• The SMILES and INCHI data are used to calculate missing or invalid SMILES, INCHI, INCHIKEY
and formula data. If prefCalcChemProps=TRUE then existing INCHIKEY and formula data is
overwritten by calculated values whenever possible.

• The chemical formulae which were not calculated are verified and normalized. This process
may be time consuming, and is potentially largely avoided by setting prefCalcChemProps=TRUE.

• Neutral masses are calculated for missing values (prefCalcChemProps=FALSE) or whenever
possible (prefCalcChemProps=TRUE).

Note that calculation of formulae for molecules that are isotopically labelled is currently only sup-
ported for deuterium (2H) elements.

This functionality relies heavily on OpenBabel, please make sure it is installed.

Note

Both screenSuspects may use the suspect names to base file names used for reporting, logging etc.
Therefore, it is important that these are file-compatible names. For this purpose, screenSuspects
will automatically try to convert long, non-unique and/or otherwise incompatible suspect names.

References

OBoyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011). “Open
Babel: An open chemical toolbox.” Journal of Cheminformatics, 3(1). doi:10.1186/17582946333.

See Also

featureGroupsScreening

sets-workflow Sets workflows

Description

With sets workflows in patRoon a complete non-target (or suspect) screening workflow is per-
formed with sample analyses that were measured with different MS methods (typically positive and
negative ionization).

https://github.com/openbabel/openbabel
https://doi.org/10.1186/1758-2946-3-33

286 settings

Details

The analyses files that were measured with a different method are grouped in sets. In the most
typical case, there is a "positive" and "negative" set, for the positively/negatively ionized data,
respectively. However, other distinctions than polarity are also possible (although currently the
chromatographic method should be the same between sets). A sets workflow is typically initiated
with the makeSet method. The handbook contains much more details about sets workflows.

See Also

makeSet to initiate sets workflows, workflowStepSet, the Sets workflows sections in other doc-
umentation pages and the patRoon handbook.

settings Compounds list class for MetFrag results.

Description

This class is derived from compounds and contains additional specific MetFrag data.

Usage

settings(compoundsMF)

S4 method for signature 'compoundsMF'
settings(compoundsMF)

Arguments

compoundsMF A compoundsMF object.

Details

Objects from this class are generated by generateCompoundsMetFrag

Methods (by generic)

• settings(compoundsMF): Accessor method for the settings slot.

Slots

settings A list with all general configuration settings passed to MetFrag. Feature specific items
(e.g. spectra and precursor masses) are not contained in this list.

S4 class hierarchy

• compounds

– compoundsMF

specSimParams 287

References

Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S (2016). “MetFrag relaunched: incor-
porating strategies beyond in silico fragmentation.” Journal of Cheminformatics, 8(1). doi:10.1186/
s1332101601159.

See Also

compounds and generateCompoundsMetFrag

specSimParams MS spectral similarity calculation parameters

Description

Parameters relevant for calculation of similarities between mass spectra.

Usage

getDefSpecSimParams(...)

Arguments

... optional named arguments that override defaults.

Details

For the calculation of spectral similarities the following parameters exist:

• method The similarity method: either "cosine" or "jaccard".

• removePrecursor If TRUE then precursor peaks (i.e. the mass peak corresponding to the
feature) are removed prior to similarity calculation.

• mzWeight,intWeight Mass and intensity weights used for cosine calculation.

• absMzDev Maximum absolute m/z deviation between mass peaks, used for binning spectra.

• relMinIntensity The minimum relative intensity for mass peaks (‘0-1’). Peaks with lower
intensities are not considered for similarity calculation. The relative intensities are called after
the precursor peak is removed when removePrecursor=TRUE.

• minPeaks Only consider spectra that have at least this amount of peaks (after the spectrum is
filtered).

• shift If and how shifting is applied prior to similarity calculation. Valid options are: "none"
(no shifting), "precursor" (all mass peaks of the second spectrum are shifted by the mass dif-
ference between the precursors of both spectra) or "both" (the spectra are first binned without
shifting, and peaks still unaligned are then shifted as is done when shift="precursor").

• setCombinedMethod (sets workflow) Determines how spectral similarities from different sets
are combined. Possible values are "mean", "min" or "max", which calculates the combined
value as the mean, minimum or maximum value, respectively. NA values (e.g. if a set does not
have peak list data to combine) are removed in advance.

https://doi.org/10.1186/s13321-016-0115-9
https://doi.org/10.1186/s13321-016-0115-9

288 transformationProductsFormula-class

These parameters are typically passed as a named list as the specSimParams argument to func-
tions that do spectral similarity calculations. The getDefSpecSimParams function can be used to
generate such parameter list with defaults.

transformationProductsFormula-class

Base transformation products (TP) class with formula information

Description

Holds information for all TPs for a set of parents, including chemical formulae.

Usage

S4 method for signature 'transformationProductsFormula'
plotGraph(

obj,
which,
components = NULL,
prune = TRUE,
onlyCompletePaths = FALSE,
width = NULL,
height = NULL

)

Arguments

obj transformationProductsFormula derived object to be accessed

which Either a character or integer vector with one or more names/indices of the
parents to plot.

components If specified (i.e. not NULL), a componentsTPs object that is used for matching
the graph with screening results. The TPs that were found will be marked. See
also the prune and onlyCompletePaths arguments.

prune If TRUE and components is set, then pathways without any detected TPs are not
shown (pruned). See also the onlyCompletePaths and components arguments.

onlyCompletePaths

If TRUE and components is set, then only pathways are shown for which all TPs
were detected. See also the prune and components arguments.

width, height Passed to visNetwork.

Details

This (virtual) class is derived from the transformationProducts base class, please see its docu-
mentation for more details. Objects from this class are returned by TP generators. More specif-
ically, algorithms that works with chemical formulae (e.g. library_formula), uses this class
to store their results. The methods defined for this class extend the functionality for the base
transformationProducts class.

transformationProductsStructure-class 289

Value

plotGraph returns the result of visNetwork.

Methods (by generic)

• plotGraph(transformationProductsFormula): Plots an interactive hierarchy graph of the
transformation products. The resulting graph can be browsed interactively and allows explo-
ration of the different TP formation pathways. Furthermore, results from TP componentiza-
tion can be used to match the hierarchy with screening results. The graph is rendered with
visNetwork.

S4 class hierarchy

• transformationProducts

– transformationProductsFormula

* transformationProductsLibraryFormula

See Also

The base class transformationProducts for more relevant methods and generateTPs

transformationProductsStructure-class

Base transformation products (TP) class with structure information

Description

Holds information for all TPs for a set of parents, including structural information.

Usage

S4 method for signature 'transformationProductsStructure'
convertToMFDB(TPs, out, includeParents = FALSE)

S4 method for signature 'transformationProductsStructure'
filter(

obj,
...,
removeParentIsomers = FALSE,
removeTPIsomers = FALSE,
removeDuplicates = FALSE,
minSimilarity = NULL,
verbose = TRUE,
negate = FALSE

)

290 transformationProductsStructure-class

S4 method for signature 'transformationProductsStructure'
plotGraph(

obj,
which,
components = NULL,
structuresMax = 25,
prune = TRUE,
onlyCompletePaths = FALSE,
width = NULL,
height = NULL

)

S4 method for signature 'transformationProductsStructure'
plotVenn(obj, ..., commonParents = FALSE, labels = NULL, vennArgs = NULL)

S4 method for signature 'transformationProductsStructure'
plotUpSet(
obj,
...,
commonParents = FALSE,
labels = NULL,
nsets = length(list(...)) + 1,
nintersects = NA,
upsetArgs = NULL

)

S4 method for signature 'transformationProductsStructure'
consensus(
obj,
...,
absMinAbundance = NULL,
relMinAbundance = NULL,
uniqueFrom = NULL,
uniqueOuter = FALSE,
labels = NULL

)

Arguments

out The file name of the the output MetFrag database.

includeParents Set to TRUE to include the parents in the database.

obj, TPs transformationProductsStructure derived object to be accessed

... For filter: Further argument passed to the base filter method.
For plotVenn, plotUpSet and consensus: further (unique) transformationProductsStructure
objects.

removeParentIsomers

If TRUE then TPs with an equal formula as their parent (isomers) are removed.

transformationProductsStructure-class 291

removeTPIsomers

If TRUE then all TPs with equal formula as any sibling TPs (isomers) are re-
moved. Unlike removeDuplicates, all TP candidates are removed (including
the first match). This filter automatically sets removeDuplicates=TRUE so that
TPs are only removed if with different structure.

removeDuplicates

If TRUE then the TPs of a parent with duplicate structures (SMILES) are removed.
Such duplicates may occur when different transformation pathways yield the
same TPs. The first TP candidate with duplicate structure will be kept.

minSimilarity Minimum structure similarity (‘0-1’) that a TP should have relative to its parent.
This data is only available if the calcSims argument to generateTPs was set to
TRUE. May be useful under the assumption that parents and TPs who have a high
structural similarity, also likely have a high MS/MS spectral similarity (which
can be evaluated after componentization with generateComponentsTPs. Any
values that are NA are removed (which only occur when a consensus was made
from objects that not all have similarity information).

verbose If set to FALSE then no text output is shown.

negate If TRUE then filters are performed in opposite manner.

which Either a character or integer vector with one or more names/indices of the
parents to plot.

components If specified (i.e. not NULL), a componentsTPs object that is used for matching
the graph with screening results. The TPs that were found will be marked. See
also the prune and onlyCompletePaths arguments.

structuresMax An integer with the maximum number of structures to plot. Setting a maxi-
mum is mainly done to avoid long times needed to construct the graph.

prune If TRUE and components is set, then pathways without any detected TPs are not
shown (pruned). See also the onlyCompletePaths and components arguments.

onlyCompletePaths

If TRUE and components is set, then only pathways are shown for which all TPs
were detected. See also the prune and components arguments.

width, height Passed to visNetwork.

commonParents Only consider TPs from parents that are common to all compared objects.

labels A character with names to use for labelling. If NULL labels are automatically
generated.

vennArgs A list with further arguments passed to VennDiagram plotting functions. Set
to NULL to ignore.

nsets, nintersects
See upset.

upsetArgs A list with any further arguments to be passed to upset. Set to NULL to ignore.
absMinAbundance, relMinAbundance

Minimum absolute or relative (‘0-1’) abundance across objects for a result to be
kept. For instance, relMinAbundance=0.5 means that a result should be present
in at least half of the number of compared objects. Set to ‘NULL’ to ignore and
keep all results. Limits cannot be set when uniqueFrom is not NULL.

292 transformationProductsStructure-class

uniqueFrom Set this argument to only retain TPs that are unique within one or more of the
objects for which the consensus is made. Selection is done by setting the value
of uniqueFrom to a logical (values are recycled), numeric (select by index) or
a character (as obtained with algorithm(obj)). For logical and numeric
values the order corresponds to the order of the objects given for the consensus.
Set to NULL to ignore.

uniqueOuter If uniqueFrom is not NULL and if uniqueOuter=TRUE: only retain data that are
also unique between objects specified in uniqueFrom.

Details

This (virtual) class is derived from the transformationProducts base class, please see its docu-
mentation for more details. Objects from this class are returned by TP generators. More specif-
ically, algorithms that works with chemical structures (e.g. biotransformer), uses this class
to store their results. The methods defined for this class extend the functionality for the base
transformationProducts class.

Value

filter returns a filtered transformationProductsStructure object.

plotGraph returns the result of visNetwork.

plotVenn (invisibly) returns a list with the following fields:

• gList the gList object that was returned by the utilized VennDiagram plotting function.

• areas The total area for each plotted group.

• intersectionCounts The number of intersections between groups.

The order for the areas and intersectionCounts fields is the same as the parameter order from
the used plotting function (see e.g. draw.pairwise.venn and draw.triple.venn).

consensus returns a transformationProductsStructure object that is produced by merging re-
sults from multiple transformationProductsStructure objects.

Methods (by generic)

• convertToMFDB(transformationProductsStructure): Exports this object as a ‘.csv’ file
that can be used as a MetFrag local database. Any duplicate TPs (formed by different path-
ways or parents) will be merged based on their INCHIKEY.

• filter(transformationProductsStructure): Performs rule-based filtering. Useful to
simplify and clean-up the data.

• plotGraph(transformationProductsStructure): Plots an interactive hierarchy graph of
the transformation products. The resulting graph can be browsed interactively and allows
exploration of the different TP formation pathways. Furthermore, results from TP componen-
tization can be used to match the hierarchy with screening results. The graph is rendered with
visNetwork.

• plotVenn(transformationProductsStructure): plots a Venn diagram (using VennDia-
gram) outlining unique and shared candidates of up to five different featureAnnotations
objects.

transformationProductsStructure-class 293

• plotUpSet(transformationProductsStructure): Plots an UpSet diagram (using the upset
function) outlining unique and shared TPs between different transformationProductsStructure
objects.

• consensus(transformationProductsStructure): Generates a consensus from different
transformationProductsStructure objects. Currently this removes any hierarchical data,
and all TPs are considered to originate from the same (original) parent.

Comparison between objects

The methods that compare different objects (e.g. plotVenn and consensus) use the INCHIKEY to
match TPs between objects. Moreover, the parents between objects are matched by their name.
Hence, it is crucial that the input parents to generateTPs (i.e. the parents argument) are named
equally.

S4 class hierarchy

• transformationProducts

– transformationProductsStructure

* transformationProductsStructureConsensus

* transformationProductsCTS

* transformationProductsBT

* transformationProductsLibrary

Note

consensus: If the retDir values differs between matched TPs it will be set to ‘0’. If structure simi-
larity data is available (i.e. calcSims=TRUE to generateTPs) then the mean similarity is calculated.

References

Conway JR, Lex A, Gehlenborg N (2017). “UpSetR: an R package for the visualization of inter-
secting sets and their properties.” Bioinformatics, 33(18), 2938-2940. doi:10.1093/bioinformatics/
btx364, http://dx.doi.org/10.1093/bioinformatics/btx364.

Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014). “UpSet: Visualization of In-
tersecting Sets.” IEEE Transactions on Visualization and Computer Graphics, 20(12), 1983–1992.
doi:10.1109/tvcg.2014.2346248.

See Also

The base class transformationProducts for more relevant methods and generateTPs

https://doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1093/bioinformatics/btx364
http://dx.doi.org/10.1093/bioinformatics/btx364
https://doi.org/10.1109/tvcg.2014.2346248

294 withOpt

verifyDependencies Verifies if all dependencies are installed properly and instructs the user
if this is not the case.

Description

Verifies if all dependencies are installed properly and instructs the user if this is not the case.

Usage

verifyDependencies()

withOpt Temporarily changes package options

Description

This function is inspired by withr::with_options: it can be used to execute some code where
package options are temporarily changed. This function uses a shortened syntax, especially when
changing options for patRoon.

Usage

withOpt(code, ..., prefix = "patRoon.")

Arguments

code The code to be executed.

... Named arguments with options to change.

prefix A character that will be used to prefix given option names.

Examples

Not run:
Set max parallel processes to five while performing formula calculations
withOpt(MP.maxProcs = 5, {

formulas <- generateFormulas(fGroups, "genform", ...)
})

End(Not run)

workflowStep-class 295

workflowStep-class (Virtual) Base class for all workflow objects.

Description

All workflow objects (e.g. featureGroups, compounds, etc) are derived from this class. Objects
from this class are never created directly.

Usage

S4 method for signature 'workflowStep'
algorithm(obj)

S4 method for signature 'workflowStep'
as.data.table(x, keep.rownames = FALSE, ...)

S4 method for signature 'workflowStep'
as.data.frame(x, row.names = NULL, optional = FALSE, ...)

S4 method for signature 'workflowStep'
show(object)

Arguments

obj, x, object An object (derived from) this class.

keep.rownames Ignored.

... Method specific arguments. Please see the documentation of the derived classes.
row.names, optional

Ignored.

Methods (by generic)

• algorithm(workflowStep): Returns the algorithm that was used to generate an object.

• as.data.table(workflowStep): Summarizes the data in this object and returns this as a
data.table.

• as.data.frame(workflowStep): This method simply calls as.data.table and converts the
result to a classic a data.frame.

• show(workflowStep): Shows summary information for this object.

Slots

algorithm The algorithm that was used to generate this object. Use the algorithm method for
access.

296 workflowStep-class

S4 class hierarchy

• workflowStep

– transformationProducts

* transformationProductsStructure

· transformationProductsStructureConsensus

· transformationProductsCTS

· transformationProductsBT

· transformationProductsLibrary

* transformationProductsFormula

· transformationProductsLibraryFormula

* transformationProductsLogic

– features

* featuresSet

* featuresUnset

* featuresFromFeatGroups

* featuresConsensus

* featuresBruker

* featuresEnviPick

* featuresKPIC2

* featuresOpenMS

* featuresSAFD

* featuresSIRIUS

* featuresBrukerTASQ

* featuresXCMS

* featuresXCMS3

– featureGroups

* featureGroupsSet

· featureGroupsScreeningSet

* featureGroupsUnset

* featureGroupsScreening

· featureGroupsSetScreeningUnset

* featureGroupsBruker

* featureGroupsConsensus

* featureGroupsEnviMass

* featureGroupsKPIC2

* featureGroupsOpenMS

* featureGroupsSIRIUS

* featureGroupsBrukerTASQ

* featureGroupsXCMS

* featureGroupsXCMS3

– components

* componentsCamera

workflowStepSet-class 297

* componentsFeatures

· componentsCliqueMS

· componentsOpenMS

* componentsClust

· componentsIntClust

· componentsSpecClust

* componentsSet

· componentsNTSet

* componentsUnset

* componentsNT

· componentsNTUnset

* componentsRC

* componentsTPs

– featureAnnotations

* formulas

· formulasConsensus

· formulasSet

· formulasUnset

· formulasSIRIUS

* compounds

· compoundsConsensus

· compoundsMF

· compoundsSet

· compoundsUnset

· compoundsSIRIUS

– MSPeakLists

* MSPeakListsSet

* MSPeakListsUnset

– MSLibrary

workflowStepSet-class (Virtual) base class for sets related workflow objects

Description

This class is the base for many sets workflows related classes. This class is virtual, and therefore
never created directly.

298 workflowStepSet-class

Usage

S4 method for signature 'workflowStepSet'
setObjects(obj)

S4 method for signature 'workflowStepSet'
sets(obj)

S4 method for signature 'workflowStepSet'
show(object)

Arguments

obj, object An object that is derived from workflowStepSet.

Details

The most important purpose of this class is to hold data that is specific for a set. These set objects
are typically objects with classes from a regular non-sets workflow (e.g. components, compounds),
and are used by the sets workflow object to e.g. form a consensus. Since the set objects may contain
additional data, such as algorithm specific slots, it may in some cases be of interest to access them
directly with the setObjects method (described below).

Methods (by generic)

• setObjects(workflowStepSet): Accessor for the setObjects slot.

• sets(workflowStepSet): Returns the names for each set in this object.

• show(workflowStepSet): Shows summary information for this object.

Slots

setObjects A list with the set objects (see the Details section). The list is named with the
set names.

S4 class hierarchy

• workflowStepSet

– componentsSet

* componentsNTSet

– featureGroupsScreeningSet

– compoundsSet

* compoundsConsensusSet

– formulasSet

* formulasConsensusSet

– MSPeakListsSet

Index

[(generics), 168
[,MSLibrary,ANY,missing,missing-method

(records), 252
[,MSPeakLists,ANY,ANY,missing-method

(peakLists), 233
[,MSPeakListsSet,ANY,ANY,missing-method

(peakLists), 233
[,components,ANY,ANY,missing-method

(componentTable), 42
[,componentsSet,ANY,ANY,missing-method

(componentTable), 42
[,compoundsCluster,ANY,missing,missing-method

(compoundsCluster-class), 47
[,compoundsSet,ANY,missing,missing-method

(addFormulaScoring), 11
[,featureAnnotations,ANY,missing,missing-method

(featureAnnotations-class), 66
[,featureGroups,ANY,ANY,missing-method

(groupTable), 192
[,featureGroupsComparison,ANY,missing,missing-method

(featureGroupsComparison-class),
72

[,featureGroupsScreening,ANY,ANY,missing-method
(screenInfo), 272

[,featureGroupsScreeningSet,ANY,ANY,missing-method
(screenInfo), 272

[,featureGroupsSet,ANY,ANY,missing-method
(groupTable), 192

[,features,ANY,missing,missing-method
(features-class), 74

[,featuresSet,ANY,missing,missing-method
(features-class), 74

[,formulasSet,ANY,missing,missing-method
(formulas-class), 92

[,transformationProducts,ANY,missing,missing-method
(parents), 229

[[(generics), 168
[[,MSLibrary,ANY,missing-method

(records), 252

[[,MSPeakLists,ANY,ANY-method
(peakLists), 233

[[,components,ANY,ANY-method
(componentTable), 42

[[,featureAnnotations,ANY,missing-method
(featureAnnotations-class), 66

[[,featureGroups,ANY,ANY-method
(groupTable), 192

[[,featureGroupsComparison,ANY,missing-method
(featureGroupsComparison-class),
72

[[,features,ANY,missing-method
(features-class), 74

[[,formulas,ANY,ANY-method
(formulas-class), 92

[[,transformationProducts,ANY,missing-method
(parents), 229

$ (generics), 168
$,MSLibrary-method (records), 252
$,MSPeakLists-method (peakLists), 233
$,components-method (componentTable), 42
$,featureAnnotations-method

(featureAnnotations-class), 66
$,featureGroups-method (groupTable), 192
$,featureGroupsComparison-method

(featureGroupsComparison-class),
72

$,features-method (features-class), 74
$,transformationProducts-method

(parents), 229

addAllDAEICs (bruker-utils), 26
addDAEIC (bruker-utils), 26
addFormulaScoring, 11, 134
addFormulaScoring,compounds-method

(addFormulaScoring), 11
addFormulaScoring,compoundsSet-method

(addFormulaScoring), 11
adduct, 21, 22, 45, 123, 126, 131, 136, 139,

144, 167, 176, 217, 221, 225, 254,

299

300 INDEX

283
adduct (adduct-class), 19
adduct utilities, 20
adduct-class, 19
adduct-utils, 21
adducts (generics), 168
adducts,featureGroups-method

(groupTable), 192
adducts,featureGroupsSet-method

(groupTable), 192
adducts<- (generics), 168
adducts<-,featureGroups-method

(groupTable), 192
adducts<-,featureGroupsSet-method

(groupTable), 192
algorithm, 33
algorithm (generics), 168
algorithm,optimizationResult-method

(optimizedParameters), 227
algorithm,workflowStep-method

(workflowStep-class), 295
analyses (generics), 168
analyses,featureGroups-method

(groupTable), 192
analyses,features-method

(features-class), 74
analyses,formulas-method

(formulas-class), 92
analyses,MSPeakLists-method

(peakLists), 233
Analysis info, 203
analysis info, 88, 183, 240, 260
Analysis info table, 27, 58
analysis info table, 53
Analysis information, 80–83, 85, 88–91,

188, 208, 210–215, 239
analysis information, 64, 171, 199, 204,

226, 247
analysis-information, 22, 260
analysisInfo (generics), 168
analysisInfo,featureGroups-method

(groupTable), 192
analysisInfo,features-method

(features-class), 74
analysisInfo,MSPeakListsSet-method

(peakLists), 233
analysisinfo-dataframe, 24
annotatedPeakList (generics), 168

annotatedPeakList,compounds-method
(addFormulaScoring), 11

annotatedPeakList,compoundsSet-method
(addFormulaScoring), 11

annotatedPeakList,formulas-method
(formulas-class), 92

annotatedPeakList,formulasSet-method
(formulas-class), 92

annotateSuspects, 284
annotateSuspects (screenInfo), 272
annotateSuspects,featureGroupsScreening-method

(screenInfo), 272
annotateSuspects,featureGroupsScreeningSet-method

(screenInfo), 272
annotations (generics), 168
annotations,featureAnnotations-method

(featureAnnotations-class), 66
annotations,featureGroups-method

(groupTable), 192
annotations,formulas-method

(formulas-class), 92
as.adduct, 20, 21, 45, 123, 126, 131, 136,

139, 144, 167, 217, 218, 221, 222,
254, 283, 284

as.adduct (adduct-utils), 21
as.character,adduct-method

(adduct-class), 19
as.data.frame (generics), 168
as.data.frame,workflowStep-method

(workflowStep-class), 295
as.data.table, 24, 107, 119, 243, 248, 251
as.data.table (generics), 168
as.data.table,components-method

(componentTable), 42
as.data.table,componentsTPs-method

(componentsTPs-class), 40
as.data.table,featureAnnotations-method

(featureAnnotations-class), 66
as.data.table,featureGroups-method

(groupTable), 192
as.data.table,featureGroupsScreening-method

(screenInfo), 272
as.data.table,featureGroupsScreeningSet-method

(screenInfo), 272
as.data.table,features-method

(features-class), 74
as.data.table,featuresSet-method

(features-class), 74

INDEX 301

as.data.table,formulas-method
(formulas-class), 92

as.data.table,MSLibrary-method
(records), 252

as.data.table,MSPeakLists-method
(peakLists), 233

as.data.table,MSPeakListsSet-method
(peakLists), 233

as.data.table,transformationProducts-method
(parents), 229

as.data.table,workflowStep-method
(workflowStep-class), 295

averagedPeakLists (peakLists), 233
averagedPeakLists,MSPeakLists-method

(peakLists), 233

bruker-utils, 26

caching, 28
calculateConcs, 199, 203, 260, 261, 280
calculateConcs (pred-quant), 244
calculateConcs,featureGroups-method

(pred-quant), 244
calculateConcs,featureGroupsScreening-method

(pred-quant), 244
calculateConcs,featureGroupsScreeningSet-method

(pred-quant), 244
calculateConcs,featureGroupsSet-method

(pred-quant), 244
calculateIonFormula (adduct-utils), 21
calculateJaggedness, 77, 200
calculateModality, 77, 200
calculateNeutralFormula (adduct-utils),

21
calculatePeakQualities, 76, 260
calculatePeakQualities (generics), 168
calculatePeakQualities,featureGroups-method

(groupTable), 192
calculatePeakQualities,features-method

(features-class), 74
calculateTox, 199, 203, 260, 261, 280
calculateTox (pred-tox), 249
calculateTox,featureGroups-method

(pred-tox), 249
calculateTox,featureGroupsScreening-method

(pred-tox), 249
calculateTox,featureGroupsScreeningSet-method

(pred-tox), 249

calculateTox,featureGroupsSet-method
(pred-tox), 249

CAMERA::annotate, 102, 103
CAMERA::findIsotopes, 58
CentWaveParam, 59
check-GUI, 45, 261
check-GUI (checkFeatures), 29
checkComponents, 45, 202
checkComponents (checkFeatures), 29
checkComponents,components-method

(checkFeatures), 29
checkFeatures, 29, 261
checkFeatures,featureGroups-method

(checkFeatures), 29
chordDiagram, 33, 63
clearCache (caching), 28
cliqueMS::getAnnotation, 104, 105
cliqueMS::getCliques, 104, 105
cliqueMS::getIsotopes, 104, 105
clusterProperties (generics), 168
clusterProperties,componentsClust-method

(componentsClust-class), 35
clusterProperties,compoundsCluster-method

(compoundsCluster-class), 47
clusters (generics), 168
clusters,componentsClust-method

(componentsClust-class), 35
clusters,compoundsCluster-method

(compoundsCluster-class), 47
comparison, 32, 72
comparison,featureGroups-method

(comparison), 32
comparison,featureGroupsSet-method

(comparison), 32
componentInfo, 119
componentInfo (componentTable), 42
componentInfo,components-method

(componentTable), 42
componentization, 202
components, 31, 35, 37, 39–42, 44, 46,

101–103, 115, 172–176, 199, 260,
263, 269, 296, 298

components (componentTable), 42
components-class (componentTable), 42
componentsCamera, 46, 296
componentsCamera (componentTable), 42
componentsCamera-class

(componentTable), 42

302 INDEX

componentsCliqueMS, 46, 297
componentsCliqueMS (componentTable), 42
componentsCliqueMS-class

(componentTable), 42
componentsClust, 37, 39, 46, 171–174, 241,

242, 297
componentsClust

(componentsClust-class), 35
componentsClust-class, 35
componentsFeatures, 46, 105, 112, 176, 297
componentsFeatures (componentTable), 42
componentsFeatures-class

(componentTable), 42
componentsIntClust, 37, 46, 107, 173, 242,

297
componentsIntClust (plotHeatMap), 241
componentsIntClust-class (plotHeatMap),

241
componentsNT, 47, 109, 173, 297
componentsNT (componentsNT-class), 37
componentsNT-class, 37
componentsNTSet, 46, 109, 173, 174, 297, 298
componentsNTSet (componentsNT-class), 37
componentsNTSet-class

(componentsNT-class), 37
componentsNTUnset, 47, 297
componentsNTUnset (componentsNT-class),

37
componentsNTUnset-class

(componentsNT-class), 37
componentsOpenMS, 46, 297
componentsOpenMS (componentTable), 42
componentsOpenMS-class

(componentTable), 42
componentsRC, 47, 297
componentsRC (componentTable), 42
componentsRC-class (componentTable), 42
componentsSet, 46, 103, 106, 113, 115, 172,

174, 176, 297, 298
componentsSet (componentTable), 42
componentsSet-class (componentTable), 42
componentsSpecClust, 37, 39, 46, 116, 297
componentsSpecClust

(componentsSpecClust-class), 39
componentsSpecClust-class, 39
componentsTPs, 40, 41, 47, 118, 119, 172,

173, 175, 288, 291, 297
componentsTPs (componentsTPs-class), 40

componentsTPs-class, 40
componentsUnset, 47, 297
componentsUnset (componentTable), 42
componentsUnset-class (componentTable),

42
componentTable, 42
componentTable,components-method

(componentTable), 42
compound annotation, 224
compound generation, 147
compound generators, 16
compounds, 14, 18, 47, 51, 52, 71, 72, 118,

121, 127, 155, 157, 158, 160, 161,
164, 171–174, 176, 224, 237, 245,
246, 250, 263, 269, 275, 286, 287,
295, 297, 298

compounds (addFormulaScoring), 11
compounds-class (addFormulaScoring), 11
compounds-cluster (makeHCluster), 223
compoundsCluster, 171–176, 224, 263, 269
compoundsCluster

(compoundsCluster-class), 47
compoundsCluster-class, 47
compoundsConsensus, 18, 71, 297
compoundsConsensus (addFormulaScoring),

11
compoundsConsensus-class

(addFormulaScoring), 11
compoundsConsensusSet, 18, 174, 298
compoundsConsensusSet

(addFormulaScoring), 11
compoundsConsensusSet-class

(addFormulaScoring), 11
compoundScorings, 51, 69, 121, 126, 127, 129
compoundsMF, 18, 71, 127, 286, 297
compoundsMF (settings), 286
compoundsMF-class (settings), 286
compoundsSet, 18, 71, 171–174, 176, 297, 298
compoundsSet (addFormulaScoring), 11
compoundsSet-class (addFormulaScoring),

11
compoundsSIRIUS, 18, 52, 71, 133, 174, 246,

250, 297
compoundsSIRIUS

(compoundsSIRIUS-class), 51
compoundsSIRIUS-class, 51
compoundsUnset, 18, 71, 297
compoundsUnset (addFormulaScoring), 11

INDEX 303

compoundsUnset-class
(addFormulaScoring), 11

Concentration prediction, 252
concentrations, 246
concentrations (groupTable), 192
concentrations,featureGroups-method

(groupTable), 192
consensus (generics), 168
consensus,components-method

(componentTable), 42
consensus,componentsSet-method

(componentTable), 42
consensus,compounds-method

(addFormulaScoring), 11
consensus,compoundsSet-method

(addFormulaScoring), 11
consensus,featureGroupsComparison-method

(comparison), 32
consensus,featureGroupsComparisonSet-method

(comparison), 32
consensus,formulas-method

(formulas-class), 92
consensus,formulasSet-method

(formulas-class), 92
consensus,transformationProductsStructure-method

(transformationProductsStructure-class),
289

contour, 228
convertMSFiles, 52, 80, 83, 84, 86, 89–91,

148, 152, 188
convertToMFDB (generics), 168
convertToMFDB,transformationProductsStructure-method

(transformationProductsStructure-class),
289

convertToSuspects, 119
convertToSuspects (generics), 168
convertToSuspects,MSLibrary-method

(records), 252
convertToSuspects,transformationProducts-method

(parents), 229
cutClusters (generics), 168
cutClusters,componentsClust-method

(componentsClust-class), 35
cutClusters,compoundsCluster-method

(compoundsCluster-class), 47
cutree, 36, 49, 50, 171
cutreeDynamicTree, 36, 49, 50, 107, 116,

171, 224

daisy, 36, 107
data.table, 41, 46, 70, 78, 97, 175, 202, 203,

232, 238, 256, 277, 295
defaultExclNormScores (generics), 168
defaultExclNormScores,compounds-method

(addFormulaScoring), 11
defaultExclNormScores,formulas-method

(formulas-class), 92
defaultOpenMSAdducts, 55, 111
delete (generics), 168
delete,components-method

(componentTable), 42
delete,componentsClust-method

(componentsClust-class), 35
delete,componentsSet-method

(componentTable), 42
delete,compoundsSet-method

(addFormulaScoring), 11
delete,compoundsSIRIUS-method

(addFormulaScoring), 11
delete,featureAnnotations-method

(featureAnnotations-class), 66
delete,featureGroups-method

(groupTable), 192
delete,featureGroupsKPIC2-method

(groupTable), 192
delete,featureGroupsScreening-method

(screenInfo), 272
delete,featureGroupsScreeningSet-method

(screenInfo), 272
delete,featureGroupsSet-method

(groupTable), 192
delete,featureGroupsXCMS-method

(groupTable), 192
delete,featureGroupsXCMS3-method

(groupTable), 192
delete,features-method

(features-class), 74
delete,featuresKPIC2-method

(features-class), 74
delete,featuresXCMS-method

(features-class), 74
delete,featuresXCMS3-method

(features-class), 74
delete,formulas-method

(formulas-class), 92
delete,formulasSet-method

(formulas-class), 92

304 INDEX

delete,formulasSIRIUS-method
(formulas-class), 92

delete,MSLibrary-method (records), 252
delete,MSPeakLists-method (peakLists),

233
delete,MSPeakListsSet-method

(peakLists), 233
delete,transformationProducts-method

(parents), 229
detectCores, 9
digest, 28
do.findmain, 114, 115
draw.pairwise.venn, 33, 34, 65, 70, 292
draw.triple.venn, 34, 65, 70, 292
drop, 236
dynamicTreeCut, 36, 50, 224

EIC parameters, 31, 45, 64, 264, 266, 270,
272

EICParams, 32, 55
enviPickwrap, 82
executeMultiProcess, 140
experimentInfo (optimizedParameters),

227
experimentInfo,optimizationResult-method

(optimizedParameters), 227
export (generics), 168
export,featureGroups-method

(groupTable), 192
export,featureGroupsSet-method

(groupTable), 192
export,MSLibrary-method (records), 252

fastcluster, 179, 208
fastcluster::hclust, 107, 116
feature-filtering, 206
feature-filtering

(replicateGroupSubtract), 258
feature-optimization, 56
feature-plotting, 61, 181, 206
featureAnnotations, 14, 16–19, 71, 95,

97–99, 171–175, 199, 245, 250, 260,
297

featureAnnotations
(featureAnnotations-class), 66

featureAnnotations-class, 66
featureGroups, 17, 27, 28, 31, 33, 34, 44, 45,

68, 72, 73, 78, 98, 101, 102, 104,
107, 108, 111, 114, 116, 118, 120,

122, 125, 131, 134, 136, 139, 144,
147, 149, 150, 152, 167, 171–176,
182, 184, 185, 187, 188, 190, 191,
197, 203, 206, 207, 209–211, 225,
226, 229, 233, 236, 245, 246, 250,
259–261, 263, 266, 269, 272, 275,
276, 279, 281–283, 295, 296

featureGroups (groupTable), 192
featureGroups documentation, 23
featureGroups-class (groupTable), 192
featureGroups-compare (comparison), 32
featureGroupsBruker, 203, 296
featureGroupsBruker (groupTable), 192
featureGroupsBruker-class (groupTable),

192
featureGroupsBrukerTASQ, 203, 296
featureGroupsBrukerTASQ

(screenSuspects), 281
featureGroupsBrukerTASQ-class

(screenSuspects), 281
featureGroupsComparison, 34, 172–175
featureGroupsComparison

(featureGroupsComparison-class),
72

featureGroupsComparison-class, 72
featureGroupsComparisonSet, 172
featureGroupsComparisonSet

(featureGroupsComparison-class),
72

featureGroupsComparisonSet-class
(featureGroupsComparison-class),
72

featureGroupsConsensus, 203, 296
featureGroupsConsensus (comparison), 32
featureGroupsConsensus-class

(comparison), 32
featureGroupsEnviMass, 203, 296
featureGroupsEnviMass (groupTable), 192
featureGroupsEnviMass-class

(groupTable), 192
featureGroupsKPIC2, 174, 203, 296
featureGroupsKPIC2 (groupTable), 192
featureGroupsKPIC2-class (groupTable),

192
featureGroupsOpenMS, 203, 296
featureGroupsOpenMS (groupTable), 192
featureGroupsOpenMS-class (groupTable),

192

INDEX 305

featureGroupsScreening, 172, 174–176,
203, 245, 246, 250, 279, 284, 296

featureGroupsScreening (screenInfo), 272
featureGroupsScreening-class

(screenInfo), 272
featureGroupsScreeningSet, 172, 174–176,

203, 296, 298
featureGroupsScreeningSet (screenInfo),

272
featureGroupsScreeningSet-class

(screenInfo), 272
featureGroupsSet, 171–174, 176, 203, 226,

280, 296
featureGroupsSet (groupTable), 192
featureGroupsSet-class (groupTable), 192
featureGroupsSetScreeningUnset, 203,

279, 296
featureGroupsSetScreeningUnset

(screenInfo), 272
featureGroupsSetScreeningUnset-class

(screenInfo), 272
featureGroupsSIRIUS, 203, 296
featureGroupsSIRIUS (groupTable), 192
featureGroupsSIRIUS-class (groupTable),

192
featureGroupsUnset, 203, 296
featureGroupsUnset (groupTable), 192
featureGroupsUnset-class (groupTable),

192
featureGroupsXCMS, 174, 203, 296
featureGroupsXCMS (groupTable), 192
featureGroupsXCMS-class (groupTable),

192
featureGroupsXCMS3, 174, 203, 296
featureGroupsXCMS3 (groupTable), 192
featureGroupsXCMS3-class (groupTable),

192
featureQualityNames, 73, 76, 260
features, 57, 77, 79–84, 86, 88–91, 171–176,

181–183, 185, 186, 189, 191,
200–203, 207, 209, 212–215, 225,
226, 229, 296

features (features-class), 74
features have been found, 184
features method of this function, 202
features-class, 74
featuresBruker, 79, 296
featuresBruker (features-class), 74

featuresBruker-class (features-class),
74

featuresBrukerTASQ, 79, 296
featuresBrukerTASQ (screenSuspects), 281
featuresBrukerTASQ-class

(screenSuspects), 281
featuresConsensus, 79, 296
featuresConsensus (comparison), 32
featuresConsensus-class (comparison), 32
featuresEnviPick, 79, 296
featuresEnviPick (features-class), 74
featuresEnviPick-class

(features-class), 74
featuresFromFeatGroups, 79, 296
featuresFromFeatGroups (comparison), 32
featuresFromFeatGroups-class

(comparison), 32
featuresKPIC2, 79, 174, 296
featuresKPIC2 (features-class), 74
featuresKPIC2-class (features-class), 74
featuresOpenMS, 79, 296
featuresOpenMS (features-class), 74
featuresOpenMS-class (features-class),

74
featuresSAFD, 79, 296
featuresSAFD (features-class), 74
featuresSAFD-class (features-class), 74
featuresSet, 79, 172, 174–176, 226, 296
featuresSet (features-class), 74
featuresSet-class (features-class), 74
featuresSIRIUS, 79, 296
featuresSIRIUS (features-class), 74
featuresSIRIUS-class (features-class),

74
featuresUnset, 79, 296
featuresUnset (features-class), 74
featuresUnset-class (features-class), 74
featuresXCMS, 79, 174, 296
featuresXCMS (features-class), 74
featuresXCMS-class (features-class), 74
featuresXCMS3, 79, 174, 296
featuresXCMS3 (features-class), 74
featuresXCMS3-class (features-class), 74
featureTable, 203
featureTable (generics), 168
featureTable,featureGroups-method

(groupTable), 192
featureTable,featureGroupsSet-method

306 INDEX

(groupTable), 192
featureTable,features-method

(features-class), 74
filter, 23, 31, 65, 119, 179, 199
filter (generics), 168
filter method, 155, 159, 162, 248, 251
filter,components-method

(componentTable), 42
filter,componentsSet-method

(componentTable), 42
filter,componentsTPs-method

(componentsTPs-class), 40
filter,compounds-method

(addFormulaScoring), 11
filter,compoundsSet-method

(addFormulaScoring), 11
filter,featureAnnotations-method

(featureAnnotations-class), 66
filter,featureGroups-method

(replicateGroupSubtract), 258
filter,featureGroupsScreening-method

(screenInfo), 272
filter,featureGroupsScreeningSet-method

(screenInfo), 272
filter,featureGroupsSet-method

(replicateGroupSubtract), 258
filter,features-method

(features-class), 74
filter,featuresSet-method

(features-class), 74
filter,formulasSet-method

(formulas-class), 92
filter,MSLibrary-method (records), 252
filter,MSPeakLists-method (peakLists),

233
filter,MSPeakListsSet-method

(peakLists), 233
filter,transformationProducts-method

(parents), 229
filter,transformationProductsStructure-method

(transformationProductsStructure-class),
289

findFeatures, 23, 57–59, 80, 80, 82–84,
87–89, 91, 92, 184, 212

findFeaturesBruker, 23, 81, 81, 137, 151,
207

findFeaturesEnviPick, 23, 81, 82
findFeaturesKPIC2, 81, 83

findFeaturesOpenMS, 23, 81, 84
findFeaturesSAFD, 81, 87
findFeaturesSIRIUS, 81, 89
findFeaturesXCMS, 81, 90
findFeaturesXCMS3, 81, 90, 91, 91
findFGroup (componentTable), 42
findFGroup,components-method

(componentTable), 42
flexdashboard, 271
formula generation, 147
formulas, 14, 17, 41, 71, 72, 95, 98, 100, 101,

118, 134, 135, 137, 141, 171–176,
237, 263, 269, 275, 297

formulas (formulas-class), 92
formulas-class, 92
formulasConsensus, 71, 98, 297
formulasConsensus (formulas-class), 92
formulasConsensus-class

(formulas-class), 92
formulasConsensusSet, 98, 174, 298
formulasConsensusSet (formulas-class),

92
formulasConsensusSet-class

(formulas-class), 92
formulaScorings, 69, 99, 134
formulasSet, 71, 98, 171–174, 176, 297, 298
formulasSet (formulas-class), 92
formulasSet-class (formulas-class), 92
formulasSIRIUS, 71, 98, 100, 145, 146, 174,

245, 250, 297
formulasSIRIUS (formulasSIRIUS-class),

100
formulasSIRIUS-class, 100
formulasUnset, 71, 98, 297
formulasUnset (formulas-class), 92
formulasUnset-class (formulas-class), 92
fp.sim.matrix, 155, 159, 162, 224
future.apply, 9
future_lapply, 9

generateAnalysisInfo, 25
generateAnalysisInfo

(analysis-information), 22
generateAnalysisInfoFromEnviMass

(analysis-information), 22
generateComponents, 37–39, 42, 45, 47, 101,

103, 106, 108, 110, 113, 115, 117,
120, 202, 242

INDEX 307

generateComponents,featureGroups-method
(generateComponents), 101

generateComponentsCAMERA, 102, 102
generateComponentsCAMERA,featureGroups-method

(generateComponentsCAMERA), 102
generateComponentsCAMERA,featureGroupsSet-method

(generateComponentsCAMERA), 102
generateComponentsCliqueMS, 102, 104
generateComponentsCliqueMS,featureGroups-method

(generateComponentsCliqueMS),
104

generateComponentsCliqueMS,featureGroupsSet-method
(generateComponentsCliqueMS),
104

generateComponentsIntClust, 35, 102, 106,
204, 242

generateComponentsIntClust,featureGroups-method
(generateComponentsIntClust),
106

generateComponentsNontarget, 32, 38, 102,
108

generateComponentsNontarget,featureGroups-method
(generateComponentsNontarget),
108

generateComponentsNontarget,featureGroupsSet-method
(generateComponentsNontarget),
108

generateComponentsOpenMS, 55, 102, 110
generateComponentsOpenMS,featureGroups-method

(generateComponentsOpenMS), 110
generateComponentsOpenMS,featureGroupsSet-method

(generateComponentsOpenMS), 110
generateComponentsRAMClustR, 102, 113
generateComponentsRAMClustR,featureGroups-method

(generateComponentsRAMClustR),
113

generateComponentsRAMClustR,featureGroupsSet-method
(generateComponentsRAMClustR),
113

generateComponentsSpecClust, 35, 39, 102,
116

generateComponentsSpecClust,featureGroups-method
(generateComponentsSpecClust),
116

generateComponentsTPs, 32, 40, 41, 102,
117, 155, 159, 162, 291

generateComponentsTPs,featureGroups-method
(generateComponentsTPs), 117

generateComponentsTPs,featureGroupsSet-method
(generateComponentsTPs), 117

generateCompounds, 10, 16–19, 70, 120, 124,
129, 133

generateCompounds,featureGroups-method
(generateCompounds), 120

generateCompoundsLibrary, 121, 122, 218,
220, 221, 223, 255

generateCompoundsLibrary,featureGroups-method
(generateCompoundsLibrary), 122

generateCompoundsLibrary,featureGroupsSet-method
(generateCompoundsLibrary), 122

generateCompoundsMetFrag, 10, 15, 17, 121,
124, 270, 286, 287

generateCompoundsMetFrag,featureGroups-method
(generateCompoundsMetFrag), 124

generateCompoundsMetFrag,featureGroupsSet-method
(generateCompoundsMetFrag), 124

generateCompoundsSIRIUS, 10, 51, 52, 121,
127, 130, 247, 251

generateCompoundsSIRIUS,featureGroups-method
(generateCompoundsSIRIUS), 130

generateCompoundsSIRIUS,featureGroupsSet-method
(generateCompoundsSIRIUS), 130

generated transformation products, 118
generateFeatureOptPSet

(feature-optimization), 56
generateFGroupsOptPSet

(feature-optimization), 56
generateFormulas, 70, 97–99, 133, 137, 138,

140, 143, 145, 147
generateFormulas,featureGroups-method

(generateFormulas), 133
generateFormulasDA, 135, 135
generateFormulasDA,featureGroups-method

(generateFormulasDA), 135
generateFormulasDA,featureGroupsSet-method

(generateFormulasDA), 135
generateFormulasGenForm, 135, 138
generateFormulasGenForm,featureGroups-method

(generateFormulasGenForm), 138
generateFormulasGenForm,featureGroupsSet-method

(generateFormulasGenForm), 138
generateFormulasSIRIUS, 10, 100, 101, 132,

135, 143, 247, 251
generateFormulasSIRIUS,featureGroups-method

(generateFormulasSIRIUS), 143
generateFormulasSIRIUS,featureGroupsSet-method

308 INDEX

(generateFormulasSIRIUS), 143
generateMSPeakLists, 147, 150, 151, 153,

178, 238, 240
generateMSPeakLists,featureGroups-method

(generateMSPeakLists), 147
generateMSPeakListsDA, 148, 148, 151
generateMSPeakListsDA,featureGroups-method

(generateMSPeakListsDA), 148
generateMSPeakListsDA,featureGroupsSet-method

(generateMSPeakListsDA), 148
generateMSPeakListsDAFMF, 148, 150
generateMSPeakListsDAFMF,featureGroups-method

(generateMSPeakListsDAFMF), 150
generateMSPeakListsDAFMF,featureGroupsSet-method

(generateMSPeakListsDAFMF), 150
generateMSPeakListsMzR, 148, 151
generateMSPeakListsMzR,featureGroups-method

(generateMSPeakListsMzR), 151
generateMSPeakListsMzR,featureGroupsSet-method

(generateMSPeakListsMzR), 151
generateTPs, 153, 158, 161, 164, 166, 168,

232, 289, 291, 293
generateTPsBioTransformer, 10, 119, 154,

154, 231
generateTPsCTS, 154, 158
generateTPsLibrary, 119, 154, 161, 165,

166, 231
generateTPsLibraryFormula, 154, 164,

176–178
generateTPsLogic, 41, 119, 154, 167, 178
generateTPsLogic,featureGroups-method

(generateTPsLogic), 167
generateTPsLogic,featureGroupsSet-method

(generateTPsLogic), 167
generics, 168
GenFormAdducts, 217, 221
GenFormAdducts (adduct-utils), 21
genFormulaTPLibrary, 166, 176
genIDLevelRulesFile, 279
genIDLevelRulesFile (screenSuspects),

281
genReportSettingsFile (report), 262
get.fingerprint, 155, 159, 162, 224
get.mcs, 17, 50
getBPCs (generics), 168
getBPCs,data.frame-method

(analysisinfo-dataframe), 24
getBPCs,featureGroups-method

(groupTable), 192
getBPCs,features-method

(features-class), 74
getDACalibrationError (bruker-utils), 26
getDefaultRetGroupStartingParams, 60
getDefaultXcmsSetStartingParams, 59
getDefAvgPListParams, 149, 151, 152, 178,

254, 256
getDefEICParams (EICParams), 55
getDefFeaturesOptParamRanges, 57
getDefFeaturesOptParamRanges

(feature-optimization), 56
getDefFGroupsOptParamRanges, 57
getDefFGroupsOptParamRanges

(feature-optimization), 56
getDefIsolatePrecParams (peakLists), 233
getDefPredAggrParams

(pred-aggr-params), 243
getDefSpecSimParams (specSimParams), 287
getEICs, 180
getFCParams, 180
getFeatures (generics), 168
getFeatures,featureGroups-method

(groupTable), 192
getMCS (generics), 168
getMCS,compounds-method

(addFormulaScoring), 11
getMCS,compoundsCluster-method

(compoundsCluster-class), 47
getMCTrainData, 202
getMCTrainData (checkFeatures), 29
getPeakQualityMetrics, 31
getPIC, 83, 214
getPIC.kmeans, 83, 214
getPICSet, 181
getPICSet,features-method (getPICSet),

181
getPICSet,featuresKPIC2-method

(getPICSet), 181
getQuantCalibFromScreening

(pred-quant), 244
getTICs (generics), 168
getTICs,data.frame-method

(analysisinfo-dataframe), 24
getTICs,featureGroups-method

(groupTable), 192
getTICs,features-method

(features-class), 74

INDEX 309

getXCMSnExp (getXCMSSet), 182
getXCMSnExp,featureGroups-method

(getXCMSSet), 182
getXCMSnExp,featureGroupsSet-method

(getXCMSSet), 182
getXCMSnExp,featureGroupsXCMS3-method

(getXCMSSet), 182
getXCMSnExp,features-method

(getXCMSSet), 182
getXCMSnExp,featuresSet-method

(getXCMSSet), 182
getXCMSnExp,featuresXCMS3-method

(getXCMSSet), 182
getXCMSSet, 103, 182
getXCMSSet,featureGroups-method

(getXCMSSet), 182
getXCMSSet,featureGroupsSet-method

(getXCMSSet), 182
getXCMSSet,featureGroupsXCMS-method

(getXCMSSet), 182
getXCMSSet,features-method

(getXCMSSet), 182
getXCMSSet,featuresSet-method

(getXCMSSet), 182
getXCMSSet,featuresXCMS-method

(getXCMSSet), 182
groupFeatIndex (groupTable), 192
groupFeatIndex,featureGroups-method

(groupTable), 192
groupFeatures, 57, 59, 66, 80, 183, 185, 187,

188, 190, 192, 206, 210–212, 225,
226, 262

groupFeatures,data.frame-method
(groupFeatures), 183

groupFeatures,features-method
(groupFeatures), 183

groupFeaturesKPIC2, 184, 184
groupFeaturesKPIC2,features-method

(groupFeaturesKPIC2), 184
groupFeaturesKPIC2,featuresSet-method

(groupFeaturesKPIC2), 184
groupFeaturesOpenMS, 184, 186
groupFeaturesOpenMS,features-method

(groupFeaturesOpenMS), 186
groupFeaturesOpenMS,featuresSet-method

(groupFeaturesOpenMS), 186
groupFeaturesSIRIUS, 184, 188
groupFeaturesXCMS, 184, 189, 200

groupFeaturesXCMS,features-method
(groupFeaturesXCMS), 189

groupFeaturesXCMS,featuresSet-method
(groupFeaturesXCMS), 189

groupFeaturesXCMS3, 184, 190
groupFeaturesXCMS3,features-method

(groupFeaturesXCMS3), 190
groupFeaturesXCMS3,featuresSet-method

(groupFeaturesXCMS3), 190
groupInfo, 36
groupInfo (groupTable), 192
groupInfo,featureGroups-method

(groupTable), 192
groupNames (generics), 168
groupNames,components-method

(componentTable), 42
groupNames,compoundsCluster-method

(compoundsCluster-class), 47
groupNames,featureAnnotations-method

(featureAnnotations-class), 66
groupNames,featureGroups-method

(groupTable), 192
groupNames,MSPeakLists-method

(peakLists), 233
groupQualities (groupTable), 192
groupQualities,featureGroups-method

(groupTable), 192
groupScores (groupTable), 192
groupScores,featureGroups-method

(groupTable), 192
groupTable, 192
groupTable,featureGroups-method

(groupTable), 192

hclust, 36, 50, 224
heatmap.2, 242
heatmaply, 242
homol.search, 38, 108, 109
http::RETRY, 159

identifiers, 127
identifiers (addFormulaScoring), 11
identifiers,compounds-method

(addFormulaScoring), 11
igraph, 38, 41
image, 228
importCheckFeaturesSession

(checkFeatures), 29
importFeatureGroups, 206, 208, 209

310 INDEX

importFeatureGroupsBrukerPA, 206, 207
importFeatureGroupsBrukerTASQ, 206, 208
importFeatureGroupsEnviMass, 206, 209
importFeatureGroupsKPIC2, 206, 210
importFeatureGroupsXCMS, 206, 210
importFeatureGroupsXCMS3, 206, 211
importFeatures, 212, 213–216
importFeaturesEnviMass, 209, 212, 213
importFeaturesKPIC2, 212, 213
importFeaturesXCMS, 212, 214
importFeaturesXCMS3, 211, 212, 215, 215
internalStandardAssignments

(groupTable), 192
internalStandardAssignments,featureGroups-method

(groupTable), 192
internalStandardAssignments,featureGroupsSet-method

(groupTable), 192
internalStandards (groupTable), 192
internalStandards,featureGroups-method

(groupTable), 192

knitr, 271
KPIC::PICset.align, 185
KPIC::PICset.group, 185, 210

length (generics), 168
length,components-method

(componentTable), 42
length,compoundsCluster-method

(compoundsCluster-class), 47
length,featureAnnotations-method

(featureAnnotations-class), 66
length,featureGroups-method

(groupTable), 192
length,featureGroupsComparison-method

(featureGroupsComparison-class),
72

length,features-method
(features-class), 74

length,MSLibrary-method (records), 252
length,MSPeakLists-method (peakLists),

233
length,optimizationResult-method

(optimizedParameters), 227
length,transformationProducts-method

(parents), 229
lengths (generics), 168
lengths,compoundsCluster-method

(compoundsCluster-class), 47

lengths,optimizationResult-method
(optimizedParameters), 227

lines, 64, 242
loadCacheData (caching), 28
loadMSLibrary, 122, 124, 216, 220, 223,

255–257
loadMSLibraryMoNAJSON, 216, 217
loadMSLibraryMSP, 216, 218, 220

makeFileHash (caching), 28
makeHash (caching), 28
makeHCluster, 49, 223
makeHCluster,compounds-method

(makeHCluster), 223
makeSet, 225, 286
makeSet,featureGroups-method (makeSet),

225
makeSet,featureGroupsSet-method

(makeSet), 225
makeSet,features-method (makeSet), 225
makeSet,featuresSet-method (makeSet),

225
max, 243
mean, 243
merge,MSLibrary,MSLibrary-method

(records), 252
MetFragAdducts, 217, 221
MetFragAdducts (adduct-utils), 21
min, 243
MS spectral similarity parameters, 40,

119
MSFileFormats, 23
MSFileFormats (convertMSFiles), 52
MSLibrary, 123, 124, 172, 174–176, 216, 218,

220, 221, 223, 256, 297
MSLibrary (records), 252
MSLibrary-class (records), 252
MSPeakLists, 15, 96, 116, 118, 120, 123, 125,

131, 134, 136, 137, 139, 144, 148,
149, 151, 153, 171–176, 236, 240,
263, 270, 275, 297

MSPeakLists (peakLists), 233
MSPeakLists-class (peakLists), 233
MSPeakListsSet, 171–176, 240, 297, 298
MSPeakListsSet (peakLists), 233
MSPeakListsSet-class (peakLists), 233
MSPeakListsUnset, 240, 297
MSPeakListsUnset (peakLists), 233
MSPeakListsUnset-class (peakLists), 233

INDEX 311

names (generics), 168
names,components-method

(componentTable), 42
names,featureGroups-method

(groupTable), 192
names,featureGroupsComparison-method

(featureGroupsComparison-class),
72

names,MSLibrary-method (records), 252
names,transformationProducts-method

(parents), 229
newProject, 226
normInts, 24, 65, 261
normInts (groupTable), 192
normInts,featureGroups-method

(groupTable), 192
normInts,featureGroupsSet-method

(groupTable), 192
numericIDLevel (screenSuspects), 281

ObiwarpParam, 59
optimizationResult, 58, 171, 175, 176
optimizationResult

(optimizedParameters), 227
optimizationResult-class

(optimizedParameters), 227
optimizedObject (optimizedParameters),

227
optimizedObject,optimizationResult-method

(optimizedParameters), 227
optimizedParameters, 227
optimizedParameters,optimizationResult-method

(optimizedParameters), 227
optimizeFeatureFinding, 228
optimizeFeatureFinding

(feature-optimization), 56
optimizeFeatureGrouping, 228
optimizeFeatureGrouping

(feature-optimization), 56
optimizeRetGroup, 59
optimizeXcmsSet, 59
options, 9
overlap (groupTable), 192
overlap,featureGroups-method

(groupTable), 192
overlap,featureGroupsSet-method

(groupTable), 192

p.adjust, 181

parents, 229
parents,transformationProducts-method

(parents), 229
patRoon (patRoon-package), 9
patRoon options, 54, 86, 88, 89, 113, 129,

133, 142, 146, 157, 271
patRoon-package, 9
patRoon.path.BioTransformer, 156
peakLists, 233
peakLists,MSPeakLists-method

(peakLists), 233
persp, 228
plot, 14, 15, 25, 35, 36, 44, 45, 49, 63, 64, 77,

95, 96, 200, 236, 237, 242
plot (generics), 168
plot,componentsClust,missing-method

(componentsClust-class), 35
plot,compoundsCluster,missing-method

(compoundsCluster-class), 47
plot,featureGroups,missing-method

(feature-plotting), 61
plot,featureGroupsComparison,missing-method

(comparison), 32
plot,optimizationResult,missing-method

(optimizedParameters), 227
plot.dendrogram, 35, 49
plotBPCs (generics), 168
plotBPCs,data.frame-method

(analysisinfo-dataframe), 24
plotBPCs,featureGroups-method

(groupTable), 192
plotBPCs,features-method

(features-class), 74
plotChord (generics), 168
plotChord,featureGroups-method

(feature-plotting), 61
plotChord,featureGroupsComparison-method

(comparison), 32
plotChroms, 208
plotChroms (generics), 168
plotChroms,components-method

(componentTable), 42
plotChroms,featureGroups-method

(feature-plotting), 61
plotGraph, 265, 271
plotGraph (generics), 168
plotGraph,componentsNT-method

(componentsNT-class), 37

312 INDEX

plotGraph,componentsNTSet-method
(componentsNT-class), 37

plotGraph,componentsTPs-method
(componentsTPs-class), 40

plotGraph,featureGroups-method
(feature-plotting), 61

plotGraph,featureGroupsSet-method
(feature-plotting), 61

plotGraph,transformationProductsFormula-method
(transformationProductsFormula-class),
288

plotGraph,transformationProductsStructure-method
(transformationProductsStructure-class),
289

plotHeatMap, 241
plotHeatMap,componentsIntClust-method

(plotHeatMap), 241
plotInt, 204
plotInt (generics), 168
plotInt,componentsIntClust-method

(plotHeatMap), 241
plotInt,featureGroups-method

(feature-plotting), 61
plotInt,featureGroupsSet-method

(feature-plotting), 61
plotScores, 265
plotScores (generics), 168
plotScores,compounds-method

(addFormulaScoring), 11
plotScores,formulas-method

(formulas-class), 92
plotSilhouettes (generics), 168
plotSilhouettes,componentsClust-method

(componentsClust-class), 35
plotSilhouettes,compoundsCluster-method

(compoundsCluster-class), 47
plotSpectrum (generics), 168
plotSpectrum,components-method

(componentTable), 42
plotSpectrum,compounds-method

(addFormulaScoring), 11
plotSpectrum,compoundsSet-method

(addFormulaScoring), 11
plotSpectrum,formulas-method

(formulas-class), 92
plotSpectrum,formulasSet-method

(formulas-class), 92
plotSpectrum,MSPeakLists-method

(peakLists), 233
plotSpectrum,MSPeakListsSet-method

(peakLists), 233
plotStructure (generics), 168
plotStructure,compounds-method

(addFormulaScoring), 11
plotStructure,compoundsCluster-method

(compoundsCluster-class), 47
plotTICs (generics), 168
plotTICs,data.frame-method

(analysisinfo-dataframe), 24
plotTICs,featureGroups-method

(groupTable), 192
plotTICs,features-method

(features-class), 74
plotUpSet (generics), 168
plotUpSet,featureAnnotations-method

(featureAnnotations-class), 66
plotUpSet,featureGroups-method

(feature-plotting), 61
plotUpSet,featureGroupsComparison-method

(comparison), 32
plotUpSet,transformationProductsStructure-method

(transformationProductsStructure-class),
289

plotVenn (generics), 168
plotVenn,featureAnnotations-method

(featureAnnotations-class), 66
plotVenn,featureGroups-method

(feature-plotting), 61
plotVenn,featureGroupsComparison-method

(comparison), 32
plotVenn,featureGroupsSet-method

(feature-plotting), 61
plotVenn,transformationProductsStructure-method

(transformationProductsStructure-class),
289

plotVolcano, 119
plotVolcano (generics), 168
plotVolcano,featureGroups-method

(feature-plotting), 61
pred-aggr-params, 243
pred-quant, 244
pred-tox, 249
predictCheckFeaturesSession, 202, 261
predictCheckFeaturesSession

(checkFeatures), 29
predicted concentrations, 243

INDEX 313

prediction aggregation parameters, 199,
261

predictRespFactors, 145, 276, 280
predictRespFactors (generics), 168
predictRespFactors,compounds-method

(pred-quant), 244
predictRespFactors,compoundsSet-method

(pred-quant), 244
predictRespFactors,compoundsSIRIUS-method

(pred-quant), 244
predictRespFactors,featureGroupsScreening-method

(pred-quant), 244
predictRespFactors,featureGroupsScreeningSet-method

(pred-quant), 244
predictRespFactors,formulasSet-method

(pred-quant), 244
predictRespFactors,formulasSIRIUS-method

(pred-quant), 244
predictTox, 145, 276, 280
predictTox (generics), 168
predictTox,compounds-method (pred-tox),

249
predictTox,compoundsSet-method

(pred-tox), 249
predictTox,compoundsSIRIUS-method

(pred-tox), 249
predictTox,featureGroupsScreening-method

(pred-tox), 249
predictTox,featureGroupsScreeningSet-method

(pred-tox), 249
predictTox,formulasSet-method

(pred-tox), 249
predictTox,formulasSIRIUS-method

(pred-tox), 249
printPackageOpts, 252
products (parents), 229
products,transformationProducts-method

(parents), 229

ramclustR, 114, 115
rcdk::get.xlogp, 159
RColorBrewer, 36, 49
recalibrarateDAFiles (bruker-utils), 26
records, 252
records,MSLibrary-method (records), 252
regular expression, 283
regular feature grouping algorithms, 34
replicateGroups (generics), 168

replicateGroups,featureGroups-method
(groupTable), 192

replicateGroups,features-method
(features-class), 74

replicateGroupSubtract, 258
replicateGroupSubtract,featureGroups-method

(replicateGroupSubtract), 258
report, 262
report,featureGroups-method (report),

262
reportCSV, 266
reportCSV,featureGroups-method

(reportCSV), 266
reportHTML, 10
reportHTML (reportCSV), 266
reportHTML,featureGroups-method

(reportCSV), 266
reporting, 134, 266
reporting (report), 262
reporting-legacy (reportCSV), 266
reportPDF (reportCSV), 266
reportPDF,featureGroups-method

(reportCSV), 266
revertDAAnalyses (bruker-utils), 26
rmarkdown, 271

saveCacheData (caching), 28
scores (optimizedParameters), 227
scores,optimizationResult-method

(optimizedParameters), 227
screenInfo, 272
screenInfo,featureGroupsScreening-method

(screenInfo), 272
screenInfo,featureGroupsScreeningSet-method

(screenInfo), 272
screenSuspects, 119, 155, 158, 161, 164,

176, 197, 198, 204, 232, 245, 247,
255, 256, 277, 281

screenSuspects,featureGroups-method
(screenSuspects), 281

screenSuspects,featureGroupsScreening-method
(screenSuspects), 281

screenSuspects,featureGroupsScreeningSet-method
(screenSuspects), 281

screenSuspects,featureGroupsSet-method
(screenSuspects), 281

selectIons (groupTable), 192
selectIons,featureGroups-method

(groupTable), 192

314 INDEX

selectIons,featureGroupsSet-method
(groupTable), 192

set package options, 132, 146
setDAMethod, 137
setDAMethod (bruker-utils), 26
setObjects, 38
setObjects (generics), 168
setObjects,workflowStepSet-method

(workflowStepSet-class), 297
sets (generics), 168
sets workflow, 14, 44, 77, 95, 101, 103, 106,

107, 109, 113, 115, 117, 120, 121,
135, 148, 183, 197, 225, 226, 236,
261, 284

sets workflows, 18, 34, 38, 47, 79, 98, 174,
185, 190, 191, 205, 240, 280, 297

sets,featureGroupsSet-method
(groupTable), 192

sets,featuresSet-method
(features-class), 74

sets,workflowStepSet-method
(workflowStepSet-class), 297

sets-workflow, 285
settings, 286
settings,compoundsMF-method (settings),

286
shiny, 29
show (generics), 168
show,adduct-method (adduct-class), 19
show,components-method

(componentTable), 42
show,componentsFeatures-method

(componentTable), 42
show,componentsSet-method

(componentTable), 42
show,compounds-method

(addFormulaScoring), 11
show,compoundsCluster-method

(compoundsCluster-class), 47
show,compoundsSet-method

(addFormulaScoring), 11
show,featureGroups-method (groupTable),

192
show,featureGroupsScreening-method

(screenInfo), 272
show,featureGroupsScreeningSet-method

(screenInfo), 272
show,featureGroupsSet-method

(groupTable), 192
show,features-method (features-class),

74
show,featuresSet-method

(features-class), 74
show,formulas-method (formulas-class),

92
show,formulasSet-method

(formulas-class), 92
show,MSLibrary-method (records), 252
show,MSPeakLists-method (peakLists), 233
show,MSPeakListsSet-method (peakLists),

233
show,optimizationResult-method

(optimizedParameters), 227
show,transformationProducts-method

(parents), 229
show,workflowStep-method

(workflowStep-class), 295
show,workflowStepSet-method

(workflowStepSet-class), 297
showDataAnalysis (bruker-utils), 26
specSimParams, 241, 287
spectra (records), 252
spectra,MSLibrary-method (records), 252
spectral similarity parameters, 15, 96,

116, 118, 123, 237, 264, 271, 275
spectrumSimilarity, 117
spectrumSimilarity (peakLists), 233
spectrumSimilarity,MSPeakLists-method

(peakLists), 233
spectrumSimilarity,MSPeakListsSet-method

(peakLists), 233
suspect list, 198, 204
suspect screening, 155, 158, 161, 164, 176
Suspect screening results, 247, 251
suspect-screening (screenSuspects), 281

t.test, 181
toxicities, 243, 250
toxicities (groupTable), 192
toxicities,featureGroups-method

(groupTable), 192
Toxicity prediction, 249
TP componentization, 289, 292
TP generators, 231, 288, 292
transformationProducts, 41, 118, 154, 167,

170, 172, 174–176, 232, 263, 271,
288, 289, 292, 293, 296

INDEX 315

transformationProducts (parents), 229
transformationProducts-class (parents),

229
transformationProductsBT, 232, 293, 296
transformationProductsBT

(transformationProductsStructure-class),
289

transformationProductsBT-class
(transformationProductsStructure-class),
289

transformationProductsCTS, 232, 293, 296
transformationProductsCTS

(transformationProductsStructure-class),
289

transformationProductsCTS-class
(transformationProductsStructure-class),
289

transformationProductsFormula, 165, 173,
232, 289, 296

transformationProductsFormula
(transformationProductsFormula-class),
288

transformationProductsFormula-class,
288

transformationProductsLibrary, 232, 293,
296

transformationProductsLibrary
(transformationProductsStructure-class),
289

transformationProductsLibrary-class
(transformationProductsStructure-class),
289

transformationProductsLibraryFormula,
232, 289, 296

transformationProductsLibraryFormula
(transformationProductsFormula-class),
288

transformationProductsLibraryFormula-class
(transformationProductsFormula-class),
288

transformationProductsLogic, 232, 296
transformationProductsLogic (parents),

229
transformationProductsLogic-class

(parents), 229
transformationProductsStructure, 154,

156, 160, 163, 172–174, 232, 293,
296

transformationProductsStructure
(transformationProductsStructure-class),
289

transformationProductsStructure-class,
289

transformationProductsStructureConsensus,
232, 293, 296

transformationProductsStructureConsensus
(transformationProductsStructure-class),
289

transformationProductsStructureConsensus-class
(transformationProductsStructure-class),
289

treeCut (generics), 168
treeCut,componentsClust-method

(componentsClust-class), 35
treeCut,compoundsCluster-method

(compoundsCluster-class), 47
treeCutDynamic (generics), 168
treeCutDynamic,componentsClust-method

(componentsClust-class), 35
treeCutDynamic,compoundsCluster-method

(compoundsCluster-class), 47

unique (groupTable), 192
unique,featureGroups-method

(groupTable), 192
unique,featureGroupsSet-method

(groupTable), 192
unset, 183
unset (generics), 168
unset,componentsNTSet-method

(componentsNT-class), 37
unset,componentsSet-method

(componentTable), 42
unset,compoundsConsensusSet-method

(addFormulaScoring), 11
unset,compoundsSet-method

(addFormulaScoring), 11
unset,featureGroupsScreeningSet-method

(screenInfo), 272
unset,featureGroupsSet-method

(groupTable), 192
unset,featuresSet-method

(features-class), 74
unset,formulasConsensusSet-method

(formulas-class), 92
unset,formulasSet-method

(formulas-class), 92

316 INDEX

unset,MSPeakListsSet-method
(peakLists), 233

upset, 63, 65, 69, 70, 291, 293

VennDiagram, 33, 34, 63, 65, 70, 292
verifyDependencies, 10, 294
visNetwork, 38, 41, 65, 288, 289, 291, 292

withOpt, 294
withr::with_options, 294
workflowStep, 46, 71, 79, 171, 175, 176, 203,

232, 240, 256, 296
workflowStep (workflowStep-class), 295
workflowStep-class, 295
workflowStepSet, 18, 38, 47, 98, 174, 176,

240, 280, 286, 298
workflowStepSet

(workflowStepSet-class), 297
workflowStepSet-class, 297

xcms::adjustRtime, 191
xcms::findChromPeaks, 91
xcms::findPeaks, 90
xcms::group, 189
xcms::groupChromPeaks, 191
xcms::retcor, 189
XCMSnExp, 182, 211, 215
xcmsSet, 90, 103, 182, 189, 210, 211, 214

	patRoon-package
	addFormulaScoring
	adduct-class
	adduct-utils
	analysis-information
	analysisinfo-dataframe
	bruker-utils
	caching
	checkFeatures
	comparison
	componentsClust-class
	componentsNT-class
	componentsSpecClust-class
	componentsTPs-class
	componentTable
	compoundsCluster-class
	compoundScorings
	compoundsSIRIUS-class
	convertMSFiles
	defaultOpenMSAdducts
	EICParams
	feature-optimization
	feature-plotting
	featureAnnotations-class
	featureGroupsComparison-class
	featureQualityNames
	features-class
	findFeatures
	findFeaturesBruker
	findFeaturesEnviPick
	findFeaturesKPIC2
	findFeaturesOpenMS
	findFeaturesSAFD
	findFeaturesSIRIUS
	findFeaturesXCMS
	findFeaturesXCMS3
	formulas-class
	formulaScorings
	formulasSIRIUS-class
	generateComponents
	generateComponentsCAMERA
	generateComponentsCliqueMS
	generateComponentsIntClust
	generateComponentsNontarget
	generateComponentsOpenMS
	generateComponentsRAMClustR
	generateComponentsSpecClust
	generateComponentsTPs
	generateCompounds
	generateCompoundsLibrary
	generateCompoundsMetFrag
	generateCompoundsSIRIUS
	generateFormulas
	generateFormulasDA
	generateFormulasGenForm
	generateFormulasSIRIUS
	generateMSPeakLists
	generateMSPeakListsDA
	generateMSPeakListsDAFMF
	generateMSPeakListsMzR
	generateTPs
	generateTPsBioTransformer
	generateTPsCTS
	generateTPsLibrary
	generateTPsLibraryFormula
	generateTPsLogic
	generics
	genFormulaTPLibrary
	getDefAvgPListParams
	getEICs
	getFCParams
	getPICSet
	getXCMSSet
	groupFeatures
	groupFeaturesKPIC2
	groupFeaturesOpenMS
	groupFeaturesSIRIUS
	groupFeaturesXCMS
	groupFeaturesXCMS3
	groupTable
	importFeatureGroups
	importFeatureGroupsBrukerPA
	importFeatureGroupsBrukerTASQ
	importFeatureGroupsEnviMass
	importFeatureGroupsKPIC2
	importFeatureGroupsXCMS
	importFeatureGroupsXCMS3
	importFeatures
	importFeaturesEnviMass
	importFeaturesKPIC2
	importFeaturesXCMS
	importFeaturesXCMS3
	loadMSLibrary
	loadMSLibraryMoNAJSON
	loadMSLibraryMSP
	makeHCluster
	makeSet
	newProject
	optimizedParameters
	parents
	peakLists
	plotHeatMap
	pred-aggr-params
	pred-quant
	pred-tox
	printPackageOpts
	records
	replicateGroupSubtract
	report
	reportCSV
	screenInfo
	screenSuspects
	sets-workflow
	settings
	specSimParams
	transformationProductsFormula-class
	transformationProductsStructure-class
	verifyDependencies
	withOpt
	workflowStep-class
	workflowStepSet-class
	Index

