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1 Introduction

Nowadays there are various software tools available to process data from non-target analysis (NTA) exper-
iments. Individual tools such as ProteoWizard, XCMS, OpenMS, MetFrag and mass spectrometry vendor
tools are often combined to perform a complete data processing workflow. During this workflow, raw data
files may undergo pre-treatment (e.g. conversion), chromatographic and mass spectral data are combined to
extract so called features (or ‘peaks’) and finally annotation is performed to elucidate chemical identities.
The aim of patRoon is to harmonize the many available tools in order to provide a consistent user interface
without the need to know all the details of each individual software tool and remove the need for tedious
conversion of data when multiple tools are used. The name is derived from a Dutch word that means pattern
and may also be an acronym for hyPhenated mAss specTROmetry nOn-target aNalysis. The workflow of non-
target analysis is typically highly dependent on several factors such as the analytical instrumentation used
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and requirements of the study. For this reason, patRoon does not enforce a certain workflow. Instead, most
workflow steps are optional, are highly configurable and algorithms can easily be mixed or even combined.
Furthermore, patRoon supplies a straightforward interface to easily inspect, select, visualize and report all
data that is generated during the workflow.
The documentation of patRoon consists of three parts:

1. A tutorial (accessible at here)
2. This handbook
3. The reference manual (accessible in R with ?`patRoon-package` or online here)

New users are highly recommended to start with the tutorial: this document provides an interactive in-
troduction in performing a basic NTA processing workflow with patRoon. The handbook provides a more
thorough overview of all concepts, functionalities and provides instructions and many examples on working
with patRoon. Finally, the reference manual provides all the gritty details for all functionalities, and is meant
if you want to know more details or need a quick reminder how a function should be used.

2 Installation

This chapter outlines several strategies to install patRoon and its dependencies. These include other R
packages and software tools external to R. The following strategies can largely automate this process, and
will be discussed in the next sections:

1. The patRoon bundle, which contains all dependencies (including R), and is therefore very easy to setup
(currently Windows only).

2. Reproducible Docker images.
3. Regular installations that integrate with the currently installed R environment.

The first strategy is recommended if you are using Windows and are new to R, or quickly want to try out
the latest patRoon snapshot. Docker images are specifically for users who wish to run isolated containers
and ensure high reproducibility. Finally, people already running R will most likely prefer the third strategy.
Each strategy is discussed separately in the next sections.

2.1 patRoon Bundle

The patRoon bundle contains an almost full patRoon installation, including R, all R package dependencies and
external software dependencies such as Java JDK, MetFrag and various compound libraries etc. Currently,
only ProteoWizard may need to be installed manually.
The bundles are automatically generated and tested, and can be obtained from the release page on GitHub
for released versions of patRoon and the latest pre-release on GitHub for the latest snapshot.
After downloading the bundle, simply extract the .zip file. Then, a classic R terminal can be launched by
executing R/bin/x64/Rgui.exe inside the directory where the bundle was extracted. However, it is probably
more convenient to use it from RStudio:
Start RStudio –> Tools menu –> Global options –> General tab –> R version –> Change
Then, set the R version by selecting Rterm.exe from the R/bin/x64 directory in the bundle (see screenshot
below) and restart RStudio.
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2.1.1 Updating the bundle

To update the bundle run either of the following functions:

patRoonInst::sync(allDeps = TRUE) # synchronize all packages related to patRoon to the
currently tested versions↪→

patRoonInst::update() # update all R packages related to patRoon

Both functions will update patRoon and related packages to their latest versions. However, they differ on
handling their dependencies.

In general, it is recommended to synchronize the package dependencies in the bundle, since this ensures
that versions were tested with patRoon. If you installed any other packages and also want to update these,
then first do so with regular mechanisms (e.g. update.packages(), BiocManager::install()) and then
synchronize patRoon to ensure that all packages are with tested versions.

However, if you prefer to install the latest version of all dependencies, then running patRoon::update()
might be more appropriate. In this case, it is still recommended to first update any ‘regular’ R packages as
described above, as patRoonInst::update() may install some dependencies with a specific version in case
other versions are known to not work.

More details on using patRoonInst to manage installations are discussed later.

2.1.2 Details

This section describes details on the contents and the configuration of the patRoon bundle, and is mainly
intended for readers who want to know more details or perform customizations.

The patRoon bundle consists of the following:

• A complete installation of R.
• An open java development kit (JDK) from Adoptium
• patRoon and its mandatory and optional R packages dependencies, synchronized from patRoonDeps

(discussed later).
• Most external dependencies via patRoonExt (also discussed later)

The R Windows installers are extracted with innoextract to obtain a ‘portable’ installation. The
Renviron.site and Rprofile.site files are then generated to ensure that the bundled JDK will be used,
R packages will be loaded and installed from the bundle and various other configurations are applied to
ensure that the bundle will not conflict with a regular R installation.

The bundles are automatically generated, and the relevant script can be found here.

2.2 Docker image

Docker images are provided to easily install a reproducible environment with R, patRoon and nearly all of its
dependencies. This section assumes you have a basic understanding of Docker and have it installed. If not,
please refer to the many guides available on the Internet. The Docker images of patRoon were originally only
used for automated testing, however, since these contain a complete working environment of patRoon they
are also suitable for using the software. They come with all external dependencies (except ProteoWizard),
R dependencies and MetFrag libraries. Furthermore, the Docker image also contains RStudio server, which
makes using patRoon even easier.

Below are some example shell commands on how to run the image.
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# run an interactive R console session
docker run --rm -it uva-hva.gitlab.host:4567/r.helmus/patroon/patroonrs

# run a linux shell, from which R can be launched
docker run --rm -it uva-hva.gitlab.host:4567/r.helmus/patroon/patroonrs bash

# run rstudio server, accessible from localhost:8787
# login with rstudio/yourpasswordhere
docker run --rm -p 8787:8787 -u 0 -e PASSWORD=yourpasswordhere

uva-hva.gitlab.host:4567/r.helmus/patroon/patroonrs /init↪→

# same as above, but mount a local directory (~/myvolume) as local volume so it can be
used for persistent storage↪→

# please ensure that ~/myvolume exists!
docker run --rm -p 8787:8787 -u 0 -e PASSWORD=yourpasswordhere -v

~/myvolume:/home/rstudio/myvolume uva-hva.gitlab.host:4567/r.helmus/patroon/patroonrs
/init

↪→

↪→

Note that the first two commands run as the default user rstudio, while the last two as root. The last
commands launch RStudio server. You can access it by browsing to localhost:8787 and logging in with
user rstudio and the password defined by the PASSWORD variable from the command (yourpasswordhere
in the above example). The last command also links a local volume in order to obtain persistence of files in
the container’s home directory. The Docker image is based on the excellent work from the rocker project.
For more information on RStudio related options see their documentation for the RStudio image.

2.3 Regular R installation

A ‘regular’ installation involves installing patRoon and its dependencies using the local installation of R.
This section outlines available tools to do this mostly automatically using the auxiliary patRoonInst and
patRoonExt R packages, as well as instructions to perform the complete installation manually.

NOTE It is highly recommended to perform installation steps in a ‘clean’ R session to avoid
errors when installing or upgrading packages. As such it is recommended to close all open (R
Studio) sessions and open a plain R console to perform the installation.

2.3.1 Automatic installation

The patRoonInst auxiliary package simplifies the installation process. This package automatically installs
all R package dependencies, including those unavailable from regular repositories such as CRAN and Bioc-
Conductor. Furthermore, patRoonInst installs patRoonExt, an R package that bundles most common
dependencies external to the R environment (e.g. MetFrag, OpenMS etc).

The first step is to install patRoonInst:

install.packages("patRoonInst", repos = c('https://rickhelmus.r-universe.dev',
'https://cloud.r-project.org'))↪→

# or alternatively, from GitHub
install.packages("remotes") # run this in case the remotes (or devtools) package is not

yet installed↪→

remotes::install_github("rickhelmus/patRoonInst")
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Then to perform an installation or update:

patRoonInst::install() # install patRoon and any missing dependencies
patRoonInst::update() # update patRoon and its dependencies

The installation can be customized in various ways. Firstly, the repositories used to download R packages
can be customized through the origin argument. The following options are currently available:

• patRoonDeps: contains patRoon and its dependencies (including their dependencies) with versions that
were tested against the latest patRoon version. This repository is used for the patRoon bundle, and
only available for Windows systems.

• r-universe: contains a snapshot of the latest version of patRoon and its direct dependencies.
• “regular”: in this case packages will be sourced directly from CRAN/BioConductor or GitHub. This

means that suitable build tools (e.g. Rtools on Windows) need to be available during installation.

The default on Windows systems is patRoonDeps, and r-universe otherwise. Note that both repositories
only provide packages for recent R versions.

Other installation customizations include which packages will be installed (or updated), and installing all
packages to an isolated R library. Some examples:

# install from r-universe
patRoonInst::install(origin = "runiverse")
# only install patRoon, without optional dependencies and directly from GitHub
patRoonInst::install(origin = "regular", pkgs = "patRoon")
# full installation, except two selected packages
patRoonInst::install(ignorePkgs = c("nontarget", "MetaClean"))
# full installation, but exclude 'big' optional dependencies such as example data

(patRoonData)↪→

patRoonInst::install(ignorePkgs = "big")
# install everything to an isolated R library (use .libPaths() to use it)
patRoonInst::install(lib.loc = "~/patRoon-lib")

Besides installing and updating packages, it is also possible to synchronize them with the selected repository
using the sync() function. This is mostly the same as update(), but can also downgrade packages to ensure
their versions exactly match that of the repository. This is currently only supported for the patRoonDeps
repository. Furthermore, as synchronization may involve downgrading it is intended for environments that
are primarily used for patRoon, such as the bundle and isolated R libraries. Synchronization can be performed
for all or only direct dependencies:

patRoonInst::sync(allDeps = TRUE) # synchronize all dependencies
patRoonInst::sync(allDeps = FALSE) # synchronize only direct dependencies

More options are available to customize the installation, see the reference manual (?patRoonInst::install)
for more details.

2.3.2 Manual installation

A manual installation starts with installing external dependencies, followed by R dependencies and patRoon
itself.
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2.3.2.1 External (non-R) dependencies patRoon interfaces with various software tools that are ex-
ternal to R. A complete overview is given in the table below

Dependency Remarks
Java JDK Mandatory for e.g. plotting structures and using MetFrag.
OpenBabel Highly recommend Used by e.g. suspect screening to

automatically validate and calculate chemical properties such
as InChIs and formulae. While optional, highly recommended.

Rtools May be necessary on Window when installing patRoon and its
R dependencies (discussed later).

ProteoWizard Needed for automatic data-pretreatment (e.g. data file
conversion and centroiding, Bruker users may use
DataAnalysis integration instead).

OpenMS Recommended. Used for e.g. finding and grouping features.
MetFrag CL Recommended. Used for annotation with MetFrag.
MetFrag CompTox DB Database files necessary for usage of the CompTox database

with MetFrag. Note that a recent version of MetFrag
(>=2.4.5) is required. Note that the lists with additions for
smoking metadata and wastewater metadata are also
supported.

MetFrag PubChemLite DB Database file needed to use PubChemLite with MetFrag.
MetFrag PubChem OECD PFAS DB Database file to use the OECD PFAS database with MetFrag.
SIRIUS For obtaining feature data and formula and/or compound

annotation.
BioTransformer For prediction of transformation products. See the

BioTransformer page for installation details. If you have
trouble compiling the jar file you can download it from here.

SAFD For finding features with SAFD. Please follow all the
installation on the SAFD webpage.

pngquant Used to reduce size of HTML reports (only legacy interface),
definitely optional.

Most of these dependencies are optional and only needed if their algorithms are used during the workflow.

2.3.2.1.1 Installation via patRoonExt The patRoonExt auxiliary package automatizes the installation
of most common external dependencies. For installation, just run:

install.packages("remotes") # run this if remotes (or devtools) is not already installed
remotes::install_github("rickhelmus/patRoonExt")

NOTE Make sure you have an active internet connection since several files will be downloaded
during the installation of patRoonExt.

Note that when you do an automated patRoon installation this package is automatically installed. See the
project page for more details, including ways to customize which software tools will be installed.

NOTE Currently, patRoonExt does not install ProteoWizard due to license restrictions, and
some tools, such as OpenMS and OpenBabel, are only installed on Windows systems. See the
next section to install any missing tools manually.
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2.3.2.1.2 Manually installing and configuring external tools Download the tools manually from
the linked sources shown in the table above, and subsequently install (or extract) them. You may need to
configure their file paths afterwards (OpenMS, OpenBabel and ProteoWizard are often found automatically).
To configure the file locations you should set some global package options with the options() R function,
for instance:

options(patRoon.path.pwiz = "C:/ProteoWizard") # location of ProteoWizard installation
folder↪→

options(patRoon.path.SIRIUS = "C:/sirius-win64-3.5.1") # directory with the SIRIUS
binaries↪→

options(patRoon.path.OpenMS = "/usr/local/bin") # directory with the OpenMS binaries
options(patRoon.path.pngquant = "~/pngquant") # directory containing pngquant binary
options(patRoon.path.MetFragCL = "~/MetFragCommandLine-2.4.8.jar") # full location to the

jar file↪→

options(patRoon.path.MetFragCompTox = "C:/CompTox_17March2019_SelectMetaData.csv") # full
location to desired CompTox CSV file↪→

options(patRoon.path.MetFragPubChemLite = "~/PubChemLite_exposomics_20220429.csv") # full
location to desired PubChemLite CSV file↪→

options(patRoon.path.MetFragPubChemLite = "~/PubChem_OECDPFAS_largerPFASparts_20220324")
# full location to PFAS DB ( NOTE: configured like PubChemLite)↪→

options(patRoon.path.BioTransformer = "~/biotransformer/biotransformer-3.0.0.jar")
options(patRoon.path.obabel = "C:/Program Files/OpenBabel-3.0.0") # directory with

OpenBabel binaries↪→

These commands have to be executed every time you start a new R session (e.g. as part of your script).
However, it is probably easier to add them to your ~/.Rprofile file so that they are executed automatically
when you start R. If you don’t have this file yet you can simply create it yourself (for more information see
e.g. this SO answer).

NOTE The tools that are configured through the options() described above will override any
tools that were also installed through patRoonExt. Hence, this mechanism can be used to use
specific versions not available though patRoonExt. However, this also means that you need to
ensure that options are unset when you prefer that tools are used through patRoonExt.

2.3.2.2 Installing patRoon and its R dependencies The table below lists all the R packages that
are involved in the installation of patRoon.
Note that only the CAMERA installation is mandatory, the rest involves installation of optional packages. If
you are unsure which you need then you can always install the packages at a later stage.
The last three columns of the table provide hints on the availability from the patRoonDeps, r-universe and
original regular sources (the sources were discussed previously). Note that you may need to install remotes,
BiocManager and Rtools if packages are installed from their regular source. Some examples are shown below:

# Install patRoon (and its mandatory dependencies) from patRoonDeps
install.packages("patRoon", repos = "https://rickhelmus.github.io/patRoonDeps", type =

"binary")↪→

# Install KPIC2 from r-universe
install.packages("KPIC", repos = c('https://rickhelmus.r-universe.dev',

'https://cloud.r-project.org'))↪→

# Install the mandatory CAMERA package (will be installed automatically if using
patRoonDeps/r-universe)↪→

8

https://stackoverflow.com/a/46819910
https://cran.r-project.org/bin/windows/Rtools/


package comments patRoonDeps r-universe regular installation

CAMERA Mandatory no no ‘BiocManager::install(’CAMERA’)‘
RDCOMClient Only for windows no no ‘remotes::install_github(’BSchamberger/RDCOMClient’)‘
ff Dependency of RAMClustR no no ‘install.packages(’ff’)‘
Rdisop Dependency of InterpretMSSpectrum no no ‘BiocManager::install(’Rdisop’)‘
InterpretMSSpectrum Dependency of RAMClustR no yes ‘install.packages(’InterpretMSSpectrum’)‘

RAMClustR no yes ‘remotes::install_github(’cbroeckl/RAMClustR@release_1.3.x’)‘
enviPick no yes ‘remotes::install_github(’blosloos/enviPick’)‘
nontargetData Dependency of nontarget no yes ‘remotes::install_github(’blosloos/nontargetData’)‘
nontarget no yes ‘remotes::install_github(’blosloos/nontarget’)‘
ropls Dependency of KPIC no no ‘BiocManager::install(’ropls’)‘

KPIC no yes ‘remotes::install_github(’rickhelmus/KPIC2’)‘
cliqueMS no yes ‘remotes::install_github(’rickhelmus/cliqueMS’)‘
BiocStyle Dependency of MetaClean no no ‘BiocManager::install(’BiocStyle’)‘
Rgraphviz Dependency of MetaClean no no ‘BiocManager::install(’Rgraphviz’)‘
fastAdaboost Dependency of MetaClean no yes ‘remotes::install_github(’souravc83/fastAdaboost’)‘

MetaClean no yes ‘remotes::install_github(’KelseyChetnik/MetaClean’)‘
MetaCleanData no no ‘remotes::install_github(’KelseyChetnik/MetaCleanData’)‘
splashR no yes ‘remotes::install_github(’berlinguyinca/spectra-hash’)‘
MS2Tox no no ‘remotes::install_github(’kruvelab/MS2Tox@main’)‘
MS2Quant no yes ‘remotes::install_github(’kruvelab/MS2Quant@main’)‘

patRoonData no no ‘remotes::install_github(’rickhelmus/patRoonData’)‘
patRoonExt no no ‘remotes::install_github(’rickhelmus/patRoonExt’)‘
patRoon no yes ‘remotes::install_github(’rickhelmus/patRoon@master’)‘

install.packages("BiocManager") # execute this if 'BiocManager' is not yet installed
BiocManager::install("CAMERA")

# Install patRoonData from GitHub
install.packages("remotes") # execute this if remotes (or devtools) is not yet installed
remotes::install_github("rickhelmus/patRoonData")

2.3.3 Verifying the installation

After the installation is completed, you may need to restart R. Afterwards, the verifyDependencies()
function can be used to see if patRoon can find all its dependencies:

patRoon::verifyDependencies()

2.4 Managing legacy installations

Previous patRoon versions (<2.3) could be installed via an installation script. This script is now deprecated
and replaced by the previously discussed installation methods. If you used this script in the past, and would
like to update patRoon, it is important to first disable or fully remove the legacy installation. This is easily
accomplished by the patRoonInst package that was discussed before:

patRoonInst::toggleLegacy(FALSE) # disable legacy installation
patRoonInst::removeLegacy() # remove all files part of the legacy installation
patRoonInst::removeLegacy(restoreRProfile = TRUE) # as above, and remove any automatic

changes that were made in ~/.Rprofile↪→

NOTE Restart R afterwards to ensure all changes are in effect.

For more details, please refer to the reference manual (?patRoonInst::legacy).
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3 Workflow concepts

In a non-target workflow both chromatographic and mass spectral data is automatically processed in order
to provide a comprehensive chemical characterization of your samples. While the exact workflow is typically
dependent on the type of study, it generally involves of the following steps:

Note that patRoon supports flexible composition of workflows. In the scheme above you can recognize
optional steps by a dashed line. The inclusion of each step is only necessary if a further steps depends on
its data. For instance, annotation and componentization do not depend on each other and can therefore be
executed in any order or simply be omitted. A brief description of all steps is given below.

During data pre-treatment raw MS data is prepared for further analysis. A common need for this step is
to convert the data to an open format so that other tools are able to process it. Other pre-treatment steps
may involve re-calibration of m/z data or performing advanced filtering operations.

The next step is to extract features from the data. While different terminologies are used, a feature in
patRoon refers to a single chromatographic peak in an extracted ion chromatogram for a single m/z value
(within a defined tolerance). Hence, a feature contains both chromatographic data (e.g. retention time and
peak height) and mass spectral data (e.g. the accurate m/z). Note that with mass spectrometry multiple m/z
values may be detected for a single compound as a result of adduct formation, natural isotopes and/or in-
source fragments. Some algorithms may try to combine these different masses in a single feature. However,
in patRoon we generally assume this is not the case (and may optionally be done afterwards during the
componentization step described below). Features are sometimes simply referred to as ‘peaks’.

Features are found per analysis. Hence, in order to compare a feature across analyses, the next step is to
group them. This step is essential as it finds equal features even if their retention time or m/z values slightly
differ due to analytical variability. The resulting feature groups are crucial input for subsequent workflow
steps. Prior to grouping, retention time alignment between analyses may be performed to improve grouping
of features, especially when processing multiple analysis batches at once. Outside patRoon feature groups
may also be defined as profiles, aligned or grouped features or buckets.

Depending on the study type, suspect screening is then performed to limit the features that should be
considered for further processing. As its name suggests, with suspect screening only those features which are
suspected to be present are considered for further processing. These suspects are retrieved from a suspect
list which contains the m/z and (optionally) retention times for each suspect. Typical suspect lists may
be composed from databases with known pollutants or from predicted transformation products. Note that
for a ‘full’ non-target analysis no suspect screening is performed, hence, this step is simply omitted and all
features are to be considered.

The feature group data may then be subjected to componentization. A component is defined as a
collection of multiple feature groups that are somehow related to each other. Typical examples are features
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that belong to the same chemical compound (i.e. with different m/z values but equal retention time), such as
adducts, isotopes and in-source fragments. Other examples are homologous series and features that display
a similar intensity trend across samples. If adducts or isotopes were annotated during componentization
then this data may be used to prioritize the feature groups.

The last step in the workflow commonly involves annotation. During this step MS and MS/MS data are
collected in so called MS peak lists, which are then used as input for formula and compound annotation.
Formula annotation involves automatic calculation of possible formulae for each feature based on its m/z,
isotopic pattern and MS/MS fragments, whereas compound annotation (or identification) involves the as-
signment of actual chemical structures to each feature. Note that during formula and compound annotation
typically multiple candidates are assigned to a single feature. To assist interpretation of this data each
candidate is therefore ranked on characteristics such as isotopic fit, number of explained MS/MS fragments
and metadata from an online database such as number of scientific references or presence in common suspect
lists.

To summarize:

• Data-pretreatment involves preparing raw MS data for further processing (e.g. conversion to an
open format)

• Features describe chromatographic and m/z information (or ‘peaks’) in all analyses.
• A feature group consists of equal features across analyses.
• With suspect screening only features that are considered to be on a suspect list are considered

further in the workflow.
• Componentization involves consolidating different feature groups that have a relationship to each

other in to a single component.
• MS peak lists Summarizes all MS and MS/MS data that will be used for subsequent annotation.
• During formula and compound annotation candidate formulae/structures will be assigned and

ranked for each feature.

The next chapters will discuss how to generate this data and process it. Afterwards, several advanced topics
are discussed such as combining positive and negative ionization data, screening for transformation products
and other advanced functionality.

4 Generating workflow data

4.1 Introduction

4.1.1 Workflow functions

Each step in the non-target workflow is performed by a function that performs the heavy lifting of a workflow
step behind the scenes and finally return the results. An important goal of patRoon is to support multiple
algorithms for each workflow step, hence, when such a function is called you have to specify which algorithm
you want to use. The available algorithms and their characteristics will be discussed in the next sections.
An overview of all functions involved in generating workflow data is shown in the table below.

Workflow step Function
Output S4
class

Data pre-treatment convertMSFiles(), recalibrarateDAFiles() -
Finding features findFeatures() features
Grouping features groupFeatures() featureGroups
Suspect screening screenSuspects() featureGroupsScreening
Componentization generateComponents() components
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Workflow step Function
Output S4
class

MS peak lists generateMSPeakLists() MSPeakLists
Formula annotation generateFormulas() formulas
Compound annotation generateCompounds() compounds

4.1.2 Workflow output

The output of each workflow step is stored in objects derived from so called S4 classes. Knowing the details
about the S4 class system of R is generally not important when using patRoon (and well written resources
are available if you want to know more). In brief, usage of this class system allows a general data format
that is used irrespective of the algorithm that was used to generate the data. For instance, when features
have been found by OpenMS or XCMS they both return the same data format.

Another advantage of the S4 class system is the usage of so called generic functions. To put simply: a generic
function performs a certain task for different types of data objects. A good example is the plotSpectrum()
function which plots an (annotated) spectrum from data of MS peak lists or from formula or compound
annotation:

# mslists, formulas, compounds contain results for MS peak lists and
# formula/compound annotations, respectively.

plotSpectrum(mslists, ...) # plot raw MS spectrum
plotSpectrum(formulas, ...) # plot annotated spectrum from formula annotation data
plotSpectrum(compounds, ...) # likewise but for compound annotation.

4.1.3 Overview of all functions and their output

The next sections in this chapter will further detail on how to actually perform the non-target workflow
steps to generate data. The transformation product screening workflows are discussed in a separate chapter.

4.2 Preparations

4.2.1 Data pre-treatment

Prior to performing the actual non-target data processing workflow some preparations often need to be
made. Often data has to be pre-treated, for instance, by converting it to an open format that is usable for
subsequent workflow steps or to perform mass re-calibration. Some common functions are listed below.
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Figure 1: **Workflow functions and output classes.**
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Task Function Algorithms

Supported
file
for-
mats

Conversion convertMSFiles() OpenMS, ProteoWizard,
DataAnalysis

All
com-
mon
(algo-
rithm
de-
pen-
dent)

Advanced (e.g. spectral filtering) convertMSFiles() ProteoWizard All
com-
mon

Mass re-calibration recalibrarateDAFiles()DataAnalysis Bruker

The convertMSFiles() function supports conversion between many different file formats typically used
in non-target analysis. Furthermore, other pre-treatment steps are available (e.g. centroiding, filtering)
when the ProteoWizard algorithm is used. For an overview of these functionalities see the MsConvert
documentation. Some examples:

# Converts a single mzXML file to mzML format
convertMSFiles("standard-1.mzXML", to = "mzML", algorithm = "openms")

# Converts all Thermo files with ProteoWizard (the default) in the analyses/raw
# directory and stores the mzML files in analyses/raw. Afterwards, only MS1
# spectra are retained.
convertMSFiles("analyses/raw", "analyses/mzml", from = "thermo",

centroid = "vendor", filters = "msLevel 1")

NOTE Most algorithms further down the workflow require the mzML or mzXML file format
and additionally require that mass peaks have been centroided. When using the ProteoWizard
algorithm (the default), centroiding by vendor algorithms is generally recommended (i.e. by
setting centroid="vendor" as shown in the above example).

When Bruker MS data is used it can be automatically re-calibrated to improve its mass accuracy. Often this
is preceeded by calling the setDAMethod() function to set a DataAnalysis method to all files in order to con-
figure automatic re-calibration. The recalibrarateDAFiles() function performs the actual re-calibration.
The getDACalibrationError() function can be used at anytime to request the current calibration error of
each analysis. An example of these functions is shown below.

# anaInfo is a data.frame with information on analyses (see next section)
setDAMethod(anaInfo, "path/to/DAMethod.m") # configure Bruker files with given method

that has automatic calibration setup↪→

recalibrarateDAFiles(anaInfo) # trigger re-calibration for each analysis
getDACalibrationError(anaInfo) # get calibration error for each analysis ( NOTE: also

shown when previous function is finished)↪→
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4.2.2 Analysis information

The final bits of preparation is constructing the information for the analyses that need to be processed. In
patRoon this is referred to as the analysis information and often stored in a variable anaInfo (of course you
are free to choose a different name!). The analysis information should be a data.frame with the following
columns:

• path: the directory path of the file containing the analysis data
• analysis: the name of the analysis. This should be the file name without file extension.
• group: to which replicate group the analysis belongs. All analysis which are replicates of each other

get the same name.
• blank: which replicate group should be used for blank subtraction.
• conc (optional, advanced) A numeric value describing the concentration or any other value for which

the intensity in this sample may correlate, for instance, dilution factor, sampling time etc. This
column is only required when you want to obtain quantitative information (e.g. concentrations) using
the as.data.table() method function (see ?featureGroups for more information).

The generateAnalysisInfo() function can be used to (semi-)automatically generate a suitable data.frame
that contains all the required information for a set of analysis. For, instance:

# Take example data from patRoonData package (triplicate solvent blank + triplicate
standard)↪→

generateAnalysisInfo(paths = patRoonData::exampleDataPath(),
groups = c(rep("solvent-pos", 3), rep("standard-pos", 3)),
blanks = "solvent-pos")

#> path analysis group blank
#> 1 /usr/local/lib/R/site-library/patRoonData/extdata/pos solvent-pos-1 solvent-pos solvent-pos
#> 2 /usr/local/lib/R/site-library/patRoonData/extdata/pos solvent-pos-2 solvent-pos solvent-pos
#> 3 /usr/local/lib/R/site-library/patRoonData/extdata/pos solvent-pos-3 solvent-pos solvent-pos
#> 4 /usr/local/lib/R/site-library/patRoonData/extdata/pos standard-pos-1 standard-pos solvent-pos
#> 5 /usr/local/lib/R/site-library/patRoonData/extdata/pos standard-pos-2 standard-pos solvent-pos
#> 6 /usr/local/lib/R/site-library/patRoonData/extdata/pos standard-pos-3 standard-pos solvent-pos

(Note that for the example data the patRoonData::exampleAnalysisInfo() function can also be used.)

Alternatively, the newProject() function discussed in the next section can be used to interactively construct
this information.

4.2.3 Automatic project generation with newProject()

The previous sections already highlighted some steps that have to be performed prior to starting a new non-
target analysis workflow: data pre-treatment and gathering information on the analysis. Most of the times
you will put this and other R code a script file so you can recall what you have done before (i.e. reproducible
research).

The newProject() function can be used to setup a new project. When you run this function it will launch
a small tool (see screenshot below) where you can select your analyses and configure the various workflow
steps which you want to execute (e.g. data pre-treatment, finding features, annotation etc). After setting
everything up the function will generate a template script which can easily be edited afterwards. In addition,
you have the option to create a new RStudio project, which is advantegeous as it neatly seperates your data
processing work from the rest.
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NOTE At the moment newProject() only works with RStudio.

4.3 Features

Collecting features from the analyses consists of finding all features, grouping them across analyses (optionally
after retention time alignment), and if desired suspect screening:

4.3.1 Finding and grouping features

Several algorithms are available for finding features. These are listed in the table below alongside their usage
and general remarks.
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Algorithm Usage Remarks
OpenMS findFeatures(algorithm = "openms", ...) Uses the Feature-

FinderMetabo
algorithm

XCMS findFeatures(algorithm = "xcms", ...) Uses
xcms::xcmsSet()
function

XCMS (import) importFeatures(algorithm = "xcms", ...) Imports an existing
xcmsSet object

XCMS3 findFeatures(algorithm = "xcms3", ...) Uses
xcms::findChromPeaks()
from the new
XCMS3 interface

XCMS3 (import) importFeatures(algorithm = "xcms3", ...) Imports an existing
XCMSnExp object

enviPick findFeatures(algorithm = "envipick", ...) Uses
enviPick::enviPickwrap()

KPIC2 findFeatures(algorithm = "kpic2", ...) Uses the KPIC2 R
package

KPIC2 (import) importFeatures(algorithm = "kpic2", ...) Imports features
from KPIC2

SIRIUS findFeatures(algorithm = "sirius", ...) Uses SIRIUS to
find features

SAFD findFeatures(algorithm = "safd", ...) Uses the SAFD
algorithm
(experimental)

DataAnalysis findFeatures(algorithm = "bruker", ...) Uses Find
Molecular Features
from DataAnalysis
(Bruker only)

Most often the performance of these algorithms heavily depend on the data and parameter settings that are
used. Since obtaining a good feature dataset is crucial for the rest of the workflow, it is highly recommended
to experiment with different settings (this process can also be automated, see the feature optimization section
for more details). Some common parameters to look at are listed in the table below. However, there are many
more parameters that can be set, please see the reference documentation for these (e.g. ?findFeatures).

Algorithm Common parameters
OpenMS noiseThrInt, chromSNR, chromFWHM, mzPPM, minFWHM, maxFWHM (see ?findFeatures)
XCMS / XCMS3 peakwidth, mzdiff, prefilter, noise (assuming default centWave algorithm, see

?findPeaks.centWave / ?CentWaveParam)
enviPick dmzgap, dmzdens, drtgap, drtsmall, drtdens, drtfill, drttotal, minpeak, minint,

maxint (see ?enviPickwrap)
KPIC2 kmeans, level, min_snr (see ?findFeatures and ?getPIC / ?getPIC.kmeans)
SIRIUS The sirius algorithm is currently parameterless
SAFD mzRange, maxNumbIter, resolution, minInt (see ?findFeatures)
DataAnalysis See Find -> Parameters. . . -> Molecular Features in DataAnalysis.

NOTE Support for SAFD is still experimental and some extra work is required to set everything
up. Please see the reference documentation for this algorithm (?findFeatures).
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NOTE DataAnalysis feature settings have to be configured in DataAnalysis prior to calling
findFeatures().

Similarly, for grouping features across analyses several algorithms are supported.

Algorithm Usage Remarks
OpenMS groupFeatures(algorithm = "openms", ...) Uses the FeatureLinkerUnlabeled

algorithm (and
MapAlignerPoseClustering for
retention alignment)

XCMS groupFeatures(algorithm = "xcms", ...) Uses xcms::group()
xcms::retcor() functions

XCMS
(import)

importFeatureGroupsXCMS(...) Imports an existing xcmsSet
object.

XCMS3 groupFeatures(algorithm = "xcms3", ...) Uses xcms::groupChromPeaks()
and xcms::adjustRtime()
functions

XCMS3
(import)

importFeatureGroupsXCMS3(...) Imports an existing XCMSnExp
object.

KPIC2 groupFeatures(algorithm = "kpic2", ...) Uses the KPIC2 package
KPIC2
(import)

importFeatureGroupsKPIC2(...) Imports a PIC set object

SIRIUS groupFeatures(anaInfo, algorithm =
"sirius")

Finds and groups features with
SIRIUS

ProfileAnalysis importFeatureGroups(algorithm = "brukerpa",
...)

Import .csv file exported from
Bruker ProfileAnalysis

TASQ importFeatureGroups(algorithm =
"brukertasq", ...)

Imports a Global result table
(exported to Excel file and then
saved as .csv file)

NOTE: Grouping features with the sirius algorithm will perform both finding and grouping
features with SIRIUS. This algorithm cannot work with features from another algorithm.

Just like finding features, each algorithm has their own set of parameters. Often the defaults are a good
start but it is recommended to have look at them. See ?groupFeatures for more details.

When using the XCMS algorithms both the ‘classical’ interface and latest XCMS3 interfaces are supported.
Currently, both interfaces are mostly the same regarding functionalities and implementation. However, since
future developments of XCMS are primarily focused the latter this interface is recommended.

Some examples of finding and grouping features are shown below.

# The anaInfo variable contains analysis information, see the previous section

# Finding features
fListOMS <- findFeatures(anaInfo, "openms") # OpenMS, with default settings
fListOMS2 <- findFeatures(anaInfo, "openms", noiseThrInt = 500, chromSNR = 10) # OpenMS,

adjusted minimum intensity and S/N↪→

fListXCMS <- findFeatures(anaInfo, "xcms", ppm = 10) # XCMS
fListXCMSImp <- importFeatures(anaInfo, "xcms", xset) # import XCMS xcmsSet object
fListXCMS3 <- findFeatures(anaInfo, "xcms3", CentWaveParam(peakwidth = c(5, 15))) # XCMS3
fListEP <- findFeatures(anaInfo, "envipick", minint = 1E3) # enviPick
fListKPIC2 <- findFeatures(anaInfo, "kpic2", kmeans = TRUE, level = 1E4) # KPIC2
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fListSIRIUS <- findFeatures(anaInfo, "sirius") # SIRIUS

# Grouping features
fGroupsOMS <- groupFeatures(fListOMS, "openms") # OpenMS grouping, default settings
fGroupsOMS2 <- groupFeatures(fListOMS2, "openms", rtalign = FALSE) # OpenMS grouping, no

RT alignment↪→

fGroupsOMS3 <- groupFeatures(fListXCMS, "openms", maxGroupRT = 6) # group XCMS features
with OpenMS, adjusted grouping parameter↪→

# group enviPick features with XCMS3, disable minFraction
fGroupsXCMS <- groupFeatures(fListEP, "xcms3",

xcms::PeakDensityParam(sampleGroups = analInfo$group,
minFraction = 0))

# group with KPIC2 and set some custom grouping/aligning parameters
fGroupsKPIC2 <- groupFeatures(fListKPIC2, "kpic2", groupArgs = list(tolerance = c(0.002,

18)),↪→

alignArgs = list(move = "loess"))
fGroupsSIRIUS <- groupFeatures(anaInfo, "sirius") # find/group features with SIRIUS

4.3.2 Suspect screening

After features have been grouped a so called suspect screening step may be performed to find features that
may correspond to suspects within a given suspect list. The screenSuspects() function is used for this
purpose, for instance:

suspects <- data.frame(name = c("1H-benzotriazole", "N-Phenyl urea",
"2-Hydroxyquinoline"),↪→

mz = c(120.0556, 137.0709, 146.0600))
fGroupsSusp <- screenSuspects(fGroups, suspects)

4.3.2.1 Suspect list format The example above has a very simple suspect list with just three com-
pounds. The format of the suspect list is quite flexible, and can contain the following columns:

• name: The name of the suspect. Mandatory and should be unique and file-name compatible (if not,
the name will be automatically re-named to make it compatible).

• rt: The retention time in seconds. Optional. If specified any feature groups with a different retention
time will not be considered to match suspects.

• mz, SMILES, InChI, formula, neutralMass: at least one of these columns must hold data for each
suspect row. The mz column specifies the ionized mass of the suspect. If this is not available then data
from any of the other columns is used to determine the suspect mass.

• adduct: The adduct of the suspect. Optional. Set this if you are sure that a suspect should be matched
by a particular adduct ion and no data in the mz column is available.

• fragments_mz and fragments_formula: optional columns that may assist suspect annotation.

In most cases a suspect list is best made as a csv file which can then be imported with e.g. the read.csv()
function. This is exactly what happen when you specify a suspect list when using the newProject() function.

Quite often, the ionized masses are not readily available and these have to be calculated. In this case, data
in any of the SMILES/InChI/formula/neutralMass columns should be provided. Whenever possible, it is
strongly recommended to fill in SMILES column (or InChI), as this will assist annotation. Applying this to
the above example:
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suspects <- data.frame(name = c("1H-benzotriazole", "N-Phenyl urea",
"2-Hydroxyquinoline"),↪→

SMILES = c("[nH]1nnc2ccccc12", "NC(=O)Nc1ccccc1",
"Oc1ccc2ccccc2n1"))↪→

fGroupsSusp <- screenSuspects(fGroups, suspects, adduct = "[M+H]+")

NOTE: It is highly recommended to install OpenBabel to automatically validate and amend
chemical properties such as SMILES, InChI, formulae etc in the suspect list.

Since suspect matching now occurs by the neutral mass it is required that the adduct information for the
feature groups are set. This is done either by setting the adduct function argument to screenSuspects or
by feature group adduct annotations.
Finally, when the adduct is known for a suspect it can be specified in the suspect list:

# Aldicarb is measured with a sodium adduct.
suspects <- data.frame(name = c("1H-benzotriazole", "N-Phenyl urea", "Aldicarb"),

SMILES = c("[nH]1nnc2ccccc12", "NC(=O)Nc1ccccc1",
"CC(C)(C=NOC(=O)NC)SC"),↪→

adduct = c("[M+H]+", "[M+H]+", "[M+Na]+"))
fGroupsSusp <- screenSuspects(fGroups, suspects)

To summarize:

• If a suspect has data in the mz column it will be directly matched with the m/z value of a feature
group.

• Otherwise, if the suspect has data in the adduct column, the m/z value for the suspect is calculated
from its neutral mass and the adduct and then matched with the m/z of a feature group.

• Otherwise, suspects and feature groups are matched by their the neutral mass.

The fragments_mz and fragments_formula columns in the suspect list can be used to specify known
fragments for a suspect, which can help suspect annotation. The former specifies the ionized m/z of known
MS/MS peaks, whereas the second specifies known formulas. Multiple values can be given by separating
them with a semicolon:

suspects <- data.frame(name = c("1H-benzotriazole", "N-Phenyl urea",
"2-Hydroxyquinoline"),↪→

SMILES = c("[nH]1nnc2ccccc12", "NC(=O)Nc1ccccc1",
"Oc1ccc2ccccc2n1"),↪→

fragments_formula = c("C6H6N", "C6H8N;C7H6NO", ""),
fragments_mz = c("", "", "118.0652"))

4.3.2.2 Removing feature groups without hits Note that any feature groups that were not matched
to a suspect are not removed by default. If you want to remove these, you can use the onlyHits parameter:

fGroupsSusp <- screenSuspects(fGroups, suspects, onlyHits = TRUE) # remove any non-hits
immediately↪→

The advantage of removing non-hits is that it may significantly reduce the complexity of your dataset. On
the other hand, retaining all features allows you to mix a full non-target analysis with a suspect screening
workflow. The filter() function (discussed here) can also be used to remove feature groups without a hit
at a later stage.
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4.3.2.3 Combining screening results The amend function argument to screenSuspects can be used
to combine screening results from different suspect lists.

fGroupsSusp <- screenSuspects(fGroups, suspects)
fGroupsSusp <- screenSuspects(fGroupsSusp, suspects2, onlyHits = TRUE, amend = TRUE)

In this example the suspect lists defined in suspects and suspects2 are both used for screening. By setting
amend=TRUE the original screening results (i.e. from suspects) are preserved. Note that onlyHits should
only be set in the final call to screenSuspects to ensure that all feature groups are screened.

4.4 Componentization

In patRoon componentization refers to grouping related feature groups together in components. There are
different methodologies to generate components:

• Similarity on chromatographic elution profiles: feature groups with similar chromatographic behaviour
which are assuming to be the same chemical compound (e.g. adducts or isotopologues).

• Homologous series: features with increasing m/z and retention time.
• Intensity profiles: features that follow a similar intensity profile in the analyses.
• MS/MS similarity: feature groups with similar MS/MS spectra are clustered.
• Transformation products: Components are formed by grouping feature groups that have a par-

ent/transformation product relationship. This is further discussed in its own chapter.

The following algorithms are currently supported:

Algorithm Usage Remarks
CAMERA generateComponents(algorithm =

"camera", ...)
Clusters feature groups with similar
chromatographic elution profiles and
annotate by known chemical rules
(adducts, isotopologues, in-source
fragments).

RAMClustR generateComponents(algorithm =
"ramclustr", ...)

As above.

cliqueMS generateComponents(algorithm =
"cliquems", ...)

As above, but using feature
components.

OpenMS generateComponents(algorithm =
"openms", ...)

As above. Uses
MetaboliteAdductDecharger.

nontarget generateComponents(algorithm =
"nontarget", ...)

Uses the nontarget R package to
perform unsupervised homologous
series detection.

Intensity clustering generateComponents(algorithm =
"intclust", ...)

Groups features with similar intensity
profiles across analyses by hierarchical
clustering.

MS/MS clustering generateComponents(algorithm =
"specclust", ...)

Clusters feature groups with similar
MS/MS spectra.

Transformation
products

generateComponents(algorithm = "tp",
...)

Discussed in its own chapter.

4.4.1 Features with similar chromatographic behaviour

Isotopes, adducts and in-source fragments typically result in detection of multiple mass peaks by the mass
spectrometer for a single chemical compound. While some feature finding algorithms already try to collapse
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(some of) these in to a single feature, this process is often incomplete (if performed at all) and it is not
uncommon that multiple features will describe the same compound. To overcome this complexity several
algorithms can be used to group features that undergo highly similar chromatographic behavior but have
different m/z values. Basic chemical rules are then applied to the resulting components to annotate adducts,
in-source fragments and isotopologues, which may be highly useful for general identification purposes.

Note that some algorithms were primarily designed for datasets where features are generally present in the
majority of the analyses (as is relatively common in metabolomics). For environmental analyses, however,
this is often not the case. For instance, consider the following situation with three feature groups that
chromatographically overlap and therefore could be considered a component:

Feature group m/z analysis 1 analysis 2 analysis 3
#1 100.08827 Present Present Absent
#2 122.07021 Present Present Absent
#3 138.04415 Absent Absent Present

Based on the mass differences from this example a cluster of [M+H]+, [M+Na]+ and [M+K]+ could be assumed.
However, no features of the first two feature groups were detected in the third sample analysis, whereas the
third feature group wasn’t detected in the first two sample analysis. Based on this it seems unlikely that
feature group #3 should be part of the component.

For the algorithms that operate on a ‘feature group level’ (CAMERA and RAMClustR), the
relMinReplicates argument can be used to remove feature groups from a component that are not
abundant. For instance, when this value is 0.5 (the default), and all the features of a component were
detected in four different replicate groups in total, then only those feature groups are kept for which its
features were detected in at least two different replicate groups (i.e. half of four).

Another approach to reduce unlikely adduct annotations is to use algorithms that operate on a ‘feature level’
(cliqueMS and OpenMS). These algorithms generate components for each sample analysis individually. The
‘feature components’ are then merged by a consensus approach where unlikely annotations are removed (the
algorithm is described further in the reference manual, ?generateComponents).

Each algorithm supports many different parameters that may significantly influence the (quality of the)
output. For instance, care has to be taken to avoid ‘over-clustering’ of feature groups which do not belong in
the same component. This is often easily visible since the chromatographic peaks poorly overlap or are shaped
differently. The checkComponents function (discussed here) can be used to quickly verify componentization
results. For a complete listing all arguments see the reference manual (e.g. ?generateComponents).

Once the components with adduct and isotopes annotations are generated this data can be used to prioritize
and improve the workflow.

Some example usage is shown below.

# Use CAMERA with defaults
componCAM <- generateComponents(fGroups, "camera", ionization = "positive")

# CAMERA with customized settings
componCAM2 <- generateComponents(fGroups, "camera", ionization = "positive",

extraOpts = list(mzabs = 0.001, sigma = 5))

# Use RAMClustR with customized parameters
componRC <- generateComponents(fGroups, "ramclustr", ionization = "positive", hmax = 0.4,

extraOptsRC = list(cor.method = "spearman"),
extraOptsFM = list(ppm.error = 5))
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# OpenMS with customized parameters
componOpenMS <- generateComponents(fGroups, "openms", ionization = "positive", chargeMax

= 2,↪→

absMzDev = 0.002)

# cliqueMS with default parameters
componCliqueMS <- generateComponents(fGroups, "cliquems", ionization = "negative")

4.4.2 Homologues series

Homologues series can be automatically detected by interfacing with the nontarget R package. Components
are made from feature groups that show increasing m/z and retention time values. Series are first detected
within each replicate group. Afterwards, series from all replicates are linked in case (partial) overlap occurs
and this overlap consists of the same feature groups (see figure below). Linked series are then finally merged
if this will not cause any conflicts with other series: such a conflict typically occurs when two series are not
only linked to each other.

Figure 2: **Linking of homologues series** top: partial overlap and will be linked; bottom: no linkage due
to different feature in overlapping series.

The series that are linked can be interactively explored with the plotGraph() function (discussed here).

Common function arguments to generateComponents() are listed below.

Argument Remarks
ionization Ionization mode: "positive" or "negative". Not needed if adduct annotations

are available.
rtRange, mzRange Retention and m/z increment range. Retention times can be negative to allow

series with increasing m/z values and decreasing retention times.
elements Vector with elements to consider.
rtDev, absMzDev Maximum retention time and m/z deviation.
... Further arguments passed to the homol.search() function.

# default settings
componNT <- generateComponents(fGroups, "nontarget", ionization = "positive")

# customized settings
componNT2 <- generateComponents(fGroups, "nontarget", ionization = "positive",

elements = c("C", "H"), rtRange = c(-60, 60))
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4.4.3 Intensity and MS/MS similarity

The previous componentization methods utilized chemical properties to relate features. The two compo-
nentization algorithms described in this section use a statistical approach based on hierarchical clustering.
The first algorithm normalizes all feature intensities and then clusters features with similar intensity profiles
across sample analyses together. The second algorithm compares all MS/MS spectra from all feature groups,
and then uses hierarchical clustering to generate components from feature groups that have a high MS/MS
spectrum similarity.

Some common arguments to generateComponents() are listed below. It is recommended to test various
settings (especially for method) to optimize the clustering results.

Argument Algorithm Default Remarks
method All "complete" Clustering method. See ?hclust
metric intclust "euclidean" Metric used to calculate the distance

matrix. See ?daisy.

normalized |intclust|TRUE| Whether normalized feature
intensities should be used. Detailed [here](#fNorm).average|intclust|TRUE| Whether intensities
of replicates should first be averaged.MSPeakLists|specclust| - | The [MS
peak lists] object used for spectral similarity calculationsspecSimParams|specclust|getDefSpecSimParams()|
Parameters used for [spectral similarity calculation](#specSim).maxTreeHeight,deepSplit,minModuleSize|
All |1,TRUE,1| Used for dynamic cluster assignment. See?cutreeDynamicTree‘.

The components are generated by automatically assigning clusters using the dynamicTreeCut R package.
However, the cluster assignment can be performed manually or with different parameters, as is demonstrated
below.

The resulting components are stored in an object from the componentsIntClust or componentsSpecClust S4
class, which are both derived from the componentsClust class (which in turn is derived from the components
class). Several methods are defined that can be used on these objects to re-assign clusters, perform plot-
ting operations and so on. Below are some examples. For plotting see the relevant visualization section.
More info can be found in the reference manual (e.g. ?componentsIntClust, ?componentsSpecClust and
?componentsClust).

# generate intensity profile components with default settings
componInt <- generateComponents(fGroups, "intclust")

# manually re-assign clusters
componInt <- treeCut(componInt, k = 10)

# automatic re-assignment of clusters (adjusted max tree height)
componInt <- treeCutDynamic(componInt, maxTreeHeight = 0.7)

# MS/MS similarity components
componMSMS <- generateComponents(fGroups, "specclust", MSPeakLists = mslists)

4.5 Incorporating adduct and isotopic data

With mass spectrometry it is common that multiple m/z values are detected for a single compound. These
may be different adducts (e.g. [M+H]+, [M+Na]+, [M-H]-), the different isotopes of the molecule or a combina-
tion thereof. When multiple m/z values are measured for the same compound, the feature finding algorithm
may yield a distinct feature for each, which adds complexity to the data. In the previous section it was
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discussed how componentization can help to find feature groups that belong to the same adduct and/or iso-
tope clusters. This section explains how this data can be used to simplify the feature dataset. Furthermore,
this section also covers adduct annotations for feature groups which may improve and simplify the general
workflow.

4.5.1 Selecting features with preferential adducts/isotopes

The selectIons function forms the bridge between feature group and componentization data. This function
uses the adduct and isotope annotations to select preferential feature groups. For adduct clusters this means
that only the feature group that has a preferential adduct (e.g. [M+H]+) is kept while others (e.g. [M+Na]+)
are removed. If none of the adduct annotations are considered preferential, the most intense feature group
is kept instead. For isotopic clusters typically only the feature group with the monoisotopic mass (i.e. M0 )
is kept.

The behavior of selectIons is configurable with the following parameters:

Argument Remarks
prefAdduct The preferential adduct. Usually "[M+H]+" or "[M-H]-".
onlyMonoIso If TRUE and a feature group is with isotopic annotations then it is only kept if it

is monoisotopic.
chargeMismatch How charge mismatches between adduct and isotope annotations are dealt with.

Valid options are "isotope", "adduct", "none" or "ignore". See the reference
manual for selectIons for more details.

In case componentization did not lead to an adduct annotation for a feature group it will never be removed
and simply be annotated with the preferential adduct. Similarly, when no isotope annotations are available
and onlyMonoIso=TRUE, the feature group will not be removed.

Although selectIons operates fairly conservative, it is still recommended to verify the componentization
results in advance, for instance with the checkComponents function discussed here. Furthermore, the next
subsection explains how adduct annotations can be corrected manually if needed.

An example usage is shown below.

fGroupsSel <- selectIons(fGroups, componCAM, "[M+H]+")

#> No isotope annotations available!
#> Removed 21 feature groups detected as unwanted adducts/isotopes
#> Annotated 13 feature groups with adducts
#> Remaining 110 feature groups set as default adduct [M+H]+

4.5.2 Setting adduct annotations for feature groups

The adducts() function can be used to obtain a character vector with adduct annotations for each feature
group. When no adduct annotations are available it will simply return an empty character vector.

When the selectIons function is used it will automatically add adduct annotations based on the compo-
nentization data. In addition, the adducts()<- function can be used to manually add or change adduct
annotations.

adducts(fGroups) # no adduct annotations
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#> character(0)

adducts(fGroupsSel)[1:5] # adduct annotations set by selectIons()

#> M109_R192_20 M111_R330_23 M114_R269_25 M116_R317_29 M120_R268_30
#> "[M+H]+" "[M+H]+" "[M+H]+" "[M+H]+" "[M+K]+"

adducts(fGroupsSel)[3] <- "[M+Na]+" # modify annotation
adducts(fGroupsSel)[1:5] # verify

#> M109_R192_20 M111_R330_23 M114_R269_25 M116_R317_29 M120_R268_30
#> "[M+H]+" "[M+H]+" "[M+Na]+" "[M+H]+" "[M+K]+"

NOTE Adduct annotations are always available with sets workflows.

4.5.3 Using adduct annotations in the workflow

When feature groups have adduct annotations available this may simplify and improve the workflow. The
adduct and ionization arguments used for suspect screening, formula/compound annotation and some
componentization algorithms do not have to be set anymore, since this data can be obtained from the
adduct annotations. Furthermore, these algorithms may improve their results, since the algorithms are now
able to use adduct information for each feature group individually, instead of assuming that all feature groups
have the same adduct.

4.6 Annotation

The annotation consists of collecting MS peak lists and then formula and/or compound annotation:

Note that compound annotation is normally not dependent upon formula annotation. However, formula
data can be used to improve ranking of candidates afterwards by the addFormulaScoring() function, which
will be discussed later in this section. Furthermore, suspect annotation is not mandatory, and may use data
from peak lists, formulae and/or comounds.

4.6.1 MS peak lists

Algorithm Usage Remarks
mzR generateMSPeakLists(algorithm = "mzr",

...)
Uses mzR for spectra retrieval.
Recommended default.

DataAnalysisgenerateMSPeakLists(algorithm =
"bruker", ...)

Loads data after automatically generating
MS and MS/MS spectra in DataAnalysis
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Algorithm Usage Remarks
DataAnalysis
FMF

generateMSPeakLists(algorithm =
"brukerfmf", ...)

Uses spectra from the find molecular features
algorithm.

The recommended default algorithm is mzr: this algorithm is generally faster and is not limited to a vendor
data format as it will read the open mzML and mzXML file formats. On the other hand, when DataAnalysis
is used with Bruker data the spectra can be automatically background subtracted and there is no need for
file conversion. Note that the brukerfmf algorithm only works when findFeatures() was called with the
bruker algorithm.
When generateMSPeakists() is called it will

1. Find all MS and MS/MS spectra that ‘belong’ to a feature. For MS spectra this means that all spectra
close to the retention time of a feature will be collected. In addition, for MS/MS normally only spectra
will be considered that have a precursor mass close to that of the feature (however, this can be disabled
for data that was recorded with data independent acquisition (DIA, MSˆE, bbCID, . . . )).

2. Average all MS and MS/MS spectra to produce peak lists for each feature.
3. Average all peak lists for features within the same group.

Data from either (2) or (3) is used for subsequent annotation steps. Formula calculation can use either (as a
trade-off between possibly more accurate results by outlier removal vs speed), whereas compound annotation
will always use data from (3) since annotating single features (as opposed to their groups) would take a very
long time.
There are several common function arguments to generateMSPeakLists() that can be used to optimize its
behaviour:

Argument Algorithm(s) Remarks
maxMSRtWindow mzr, bruker Maximum time window +/- the feature retention time

(in seconds) to collect spectra for averaging. Higher
values may significantly increase processing times.

precursorMzWindow mzr Maximum precursor m/z search window to find MS/MS
spectra. Set to NULL to disable (i.e. for DIA
experiments).

topMost mzr Only retain feature data for no more than this amount
analyses with highest intensity. For instance, a value of
1 will only keep peak lists for the feature with highest
intensity in a feature group.

bgsubtr bruker Perform background subtraction (if the spectra type
supports this, e.g. MS and bbCID)

minMSIntensity,
minMSMSIntensity

bruker,
brukerfmf

Minimum MS and MS/MS intensity. Note that
DataAnalysis reports many zero intensity peaks so a
value of at least 1 is recommended.

MSMSType bruker The type of spectra that should be used for MSMS:
"BBCID" for bbCID experiments, otherwise "MSMS" (the
default).

In addition, several parameters can be set that affect spectral averaging. These parameters are passed as a
list to the avgFeatParams (mzr algorithm only) and avgFGroupParams arguments, which affect averaging
of feature and feature group data, respectively. Some typical parameters include:

• clusterMzWindow: Maximum m/z window used to cluster mass peaks when averaging. The better the
MS resolution, the lower this value should be.
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• topMost: Retain no more than this amount of most intense mass peaks. Useful to filter out ‘noisy’
peaks.

• minIntensityPre / minIntensityPost: Mass peaks below this intensity will be removed before/after
averaging.

See ?generateMSPeakLists for all possible parameters.

A suitable list object to set averaging parameters can be obtained with the getDefAvgPListParams() func-
tion.

# lower default clustering window, other settings remain default
avgPListParams <- getDefAvgPListParams(clusterMzWindow = 0.001)

# Apply to both feature and feature group averaging
plists <- generateMSPeakLists(fGroups, "mzr", avgFeatParams = avgPListParams,

avgFGroupParams = avgPListParams)↪→

4.6.2 Formulae

Formulae can be automatically calculated for all features using the generateFormulas() function. The
following algorithms are currently supported:

Algorithm Usage Remarks
GenForm generateFormulas(algorithm =

"genform", ...)
Bundled with patRoon. Reasonable default.

SIRIUS generateFormulas(algorithm =
"sirius", ...)

Requires MS/MS data.

DataAnalysis generateFormulas(algorithm =
"bruker", ...)

Requires FMF features
(i.e. findFeatures(algorithm = "bruker",
...)). Uses SmartFormula algorithms.

Calculation with GenForm is often a good default. It is fast and basic rules can be applied to filter out
obvious non-existing formulae. A possible drawback of GenForm, however, is that may become slow when
many candidates are calculated, for instance, due to a relative high feature m/z (e.g. >600) or loose elemental
restricitions. More thorough calculation is performed with SIRIUS: this algorithm often yields fewer and
often more plausible results. However, SIRIUS requires MS/MS data (hence features without will not
have results) and formula prediction may not work well for compounds that structurally deviate from the
training sets used by SIRIUS. Calculation with DataAnalysis is only possible when features are obtained with
DataAnalysis as well. An advantage is that analysis files do not have to be converted, however, compared
to other algorithms calculation is often relative slow.

There are two methods for formula assignment:

1. Formulae are first calculated for each individual feature within a feature group. These results
are then pooled, outliers are removed and remaining formulae are assigned to the feature group
(i.e. calculateFeatures = TRUE).

2. Formulae are directly calculated for each feature group by using group averaged peak lists (see previous
section) (i.e. calculateFeatures = FALSE).

The first method is more thorough and the possibility to remove outliers may sometimes result in better
formula assignment. However, the second method is much faster and generally recommended for large
number of analyses.
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By default, formulae are either calculated by only MS/MS data (SIRIUS) or with both MS and MS/MS data
(GenForm/Bruker). The latter also allows formula calculation when no MS/MS data is present. Furthermore,
with Bruker algorithms, data from both MS and MS/MS formula data can be combined to allow inclusion
of candidates that would otherwise be excluded by e.g. poor MS/MS data. However, a disadvantage is that
formulae needs to be calculated twice. The MSMode argument (listed below) can be used to customize this
behaviour.

An overview of common parameters that are typically set to customize formula calculation is listed below.

Argument Algorithm(s) Remarks
relMzDev genform,

sirius
The maximum relative m/z deviation for a formula to be considered
(in ppm).

elements genform,
sirius

Which elements to consider. By default "CHNOP". Try to limit
possible elements as much as possible.

calculateFeatures genform,
sirius

Whether formulae should be calculated first for all features (see
discussion above) (always TRUE with DataAnalysis).

featThresholdAnnAll Minimum relative amount (0-1 ) that a candidate formula for a
feature group should be found among all annotated features (e.g. 1
means that a candidate is only considered if it was assigned to all
annotated features).

adduct All The adduct to consider for calculation (e.g. "[M+H]+", "[M-H]-",
more details in the adduct section). Don’t set this when adduct
annotations are available.

MSMode genform,
bruker

Whether formulae should be generated only from MS data ("ms"),
MS/MS data ("msms") or both ("both"). The latter is default, see
discussion above.

profile sirius Instrument profile, e.g. "qtof", "orbitrap", "fticr".

Some typical examples:

formulasGF <- generateFormulas(fGroups, mslists, "genform") # GenForm, default settings
formulasGF2 <- generateFormulas(fGroups, mslists, "genform", calculateFeatures = FALSE) #

direct feature group assignment (faster)↪→

formulasSIR <- generateFormulas(fGroups, mslists, "sirius", elements = "CHNOPSClBr") #
SIRIUS, common elements for pollutant↪→

formulasSIR2 <- generateFormulas(fGroups, mslists, "sirius", adduct = "[M-H]-") # SIRIUS,
negative ionization↪→

formulasBr <- generateFormulas(fGroups, mslists, "bruker", MSMode = "MSMS") # Only
consider MSMS data (SmartFormula3D)↪→

4.6.3 Compounds

An important step in a typical non-target workflow is structural identification for features of interest, as
this information may finally reveal what a feature is. In a first step all possible candidate structures for a
feature are obtained from a database (based on e.g. monoisotopic mass or formula). These candidates are
then ranked, for instance, by matching the feature MS/MS data with in-silico or library MS/MS spectra or
its relevance to the environment.

Structure assignment in patRoon is performed automatically for all feature groups with the generateCompounds()
function. Currently, this function supports the following algorithms:
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Algorithm Usage Remarks
MetFrag generateCompounds(algorithm =

"metfrag", ...)
Supports many databases (including
offline and custom), matching MS/MS
data with in-silico and library MS/MS
data, and many other scorings to rank
candidates.

SIRIUS with
CSI:FingerID

generateCompounds(algorithm =
"sirius", ...)

Matches with in-silico MS/MS data,
incorporates formula annotations to
improve candidate selection.

Library generateCompounds(algorithm =
"library", ...)

Obtains candidates by matching MS/MS
data with an offline MS library, e.g.
obtained from MassBank.eu or MoNA.

All algorithms rank their candidates by matching MS/MS data with in-silico generated MS/MS data (Met-
Frag and SIRIUS) and/or experimental MS/MS data from an MS library (MetFrag with MoNA scoring and
Library algorithm). The latter may yield better candidates, and the Library algorithm is also generally much
faster. However, in-silico annotation is not limited by the availability of experimental MS/MS data.

Compound annotation is often a relative time and resource intensive procedure. For this reason, annotation
occurs for each feature group and not individual features. Nevertheless, it is not uncommon that this is the
most time consuming step in the workflow. For this reason, prioritization of features is highly important,
even more so to avoid ‘abusing’ servers when an online database is used for compound retrieval.

4.6.3.1 Database selection for MetFrag and SIRIUS Selecting the right database is important
for proper candidate assignment. If the ‘right’ chemical compound is not present in the used database,
it is impossible to assign the correct structure. Luckily, however, several large databases such as Pub-
Chem and ChemSpider are openly available which contain tens of millions of compounds. On the other
hand, these databases may also lead to many unlikely candidates and therefore more specialized (or cus-
tom databases) may be preferred. Which database will be used is dictated by the database argument to
generateCompounds(), currently the following options exist:

Database Algorithm(s) Remarks
pubchem "metfrag", "sirius" PubChem is currently the largest

compound database and is used by
default.

chemspider "metfrag" ChemSpider is another large
database. Requires security token
from here (see next section).

comptox "metfrag" The EPA CompTox contains many
compounds and scorings relevant to
environmental studies. Needs
manual download (see next section).

pubchemlite "metfrag" A specialized subset of the
PubChem database. Needs manual
download (see next section).

for-ident "metfrag" The FOR-IDENT
(STOFF-IDENT) database for
water related substances.

kegg "metfrag", "sirius" The KEGG database for biological
compounds

hmdb "metfrag", "sirius" The HMDB contains many human
metabolites.
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Database Algorithm(s) Remarks
bio "sirius" Selects all supports biological

databases.
csv, psv, sdf "metfrag" Custom database (see next section).

CSV example.

4.6.3.2 Configuring MetFrag databases and scoring Some extra configuration may be necessary
when using certain databases with MetFrag. In order to use the ChemSpider database a security token
should be requested and set with the chemSpiderToken argument to generateCompounds(). The CompTox
and PubChemLite databases need to be manually downloaded from CompTox (or variations with smoking
or wastewater metadata) and PubChemLite (or the PubChem derived OECD PFAS database). The file
location of this and other local databases (csv, psv, sdf) needs to be manually configured, see the examples
below and/or ?generateCompounds for more information on how to do this.

# PubChem: the default
compsMF <- generateCompounds(fGroups, mslists, "metfrag", adduct = "[M+H]+")

# ChemSpider: needs security token
compsMF2 <- generateCompounds(fGroups, mslists, "metfrag", database = "chemspider",

chemSpiderToken = "MY_TOKEN_HERE", adduct = "[M+H]+")

# CompTox: set global option to database path
options(patRoon.path.MetFragCompTox = "~/CompTox_17March2019_SelectMetaData.csv")
compsMF3 <- generateCompounds(fGroups, mslists, "metfrag", database = "comptox", adduct =

"[M+H]+")↪→

# CompTox: set database location without global option
compsMF4 <- generateCompounds(fGroups, mslists, "metfrag", database = "comptox", adduct =

"[M+H]+",↪→

extraOpts = list(LocalDatabasePath =
"~/CompTox_17March2019_SelectMetaData.csv"))↪→

# Same, but for custom database
compsMF5 <- generateCompounds(fGroups, mslists, "metfrag", database = "csv", adduct =

"[M+H]+",↪→

extraOpts = list(LocalDatabasePath = "~/mydb.csv"))

An example of a custom .csv database can be found here.

With MetFrag compound databases are not only used to retrieve candidate structures but are also used to
obtain metadata for further ranking. Each database has its own scorings, a table with currently supported
scorings can be obtained with the compoundScorings() function (some columns omitted):

name metfrag database default

score Score TRUE
fragScore FragmenterScore TRUE
metFusionScore OfflineMetFusionScore TRUE
individualMoNAScore OfflineIndividualMoNAScore TRUE
numberPatents PubChemNumberPatents pubchem TRUE

numberPatents Patent_Count pubchemlite TRUE
pubMedReferences PubChemNumberPubMedReferences pubchem TRUE
pubMedReferences ChemSpiderNumberPubMedReferences chemspider TRUE
pubMedReferences NUMBER_OF_PUBMED_ARTICLES comptox TRUE
pubMedReferences PubMed_Count pubchemlite TRUE
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extReferenceCount ChemSpiderNumberExternalReferences chemspider TRUE
dataSourceCount ChemSpiderDataSourceCount chemspider TRUE
referenceCount ChemSpiderReferenceCount chemspider TRUE
RSCCount ChemSpiderRSCCount chemspider TRUE
formulaScore FALSE

RF_SMILES FALSE
RF_SIRFP FALSE
LC50_SMILES FALSE
LC50_SIRFP FALSE
smartsInclusionScore SmartsSubstructureInclusionScore FALSE

smartsExclusionScore SmartsSubstructureExclusionScore FALSE
suspectListScore SuspectListScore FALSE
retentionTimeScore RetentionTimeScore FALSE
CPDATCount CPDAT_COUNT comptox TRUE
TOXCASTActive TOXCAST_PERCENT_ACTIVE comptox TRUE

dataSources DATA_SOURCES comptox TRUE
pubChemDataSources PUBCHEM_DATA_SOURCES comptox TRUE
EXPOCASTPredExpo EXPOCAST_MEDIAN_EXPOSURE_PREDICTION_MG/KG-BW/DAY comptox TRUE
ECOTOX ECOTOX comptox TRUE
NORMANSUSDAT NORMANSUSDAT comptox TRUE

MASSBANKEU MASSBANKEU comptox TRUE
TOX21SL TOX21SL comptox TRUE
TOXCAST TOXCAST comptox TRUE
KEMIMARKET KEMIMARKET comptox TRUE
MZCLOUD MZCLOUD comptox TRUE

pubMedNeuro PubMedNeuro comptox TRUE
CIGARETTES CIGARETTES comptox TRUE
INDOORCT16 INDOORCT16 comptox TRUE
SRM2585DUST SRM2585DUST comptox TRUE
SLTCHEMDB SLTCHEMDB comptox TRUE

THSMOKE THSMOKE comptox TRUE
ITNANTIBIOTIC ITNANTIBIOTIC comptox TRUE
STOFFIDENT STOFFIDENT comptox TRUE
KEMIMARKET_EXPO KEMIMARKET_EXPO comptox TRUE
KEMIMARKET_HAZ KEMIMARKET_HAZ comptox TRUE

REACH2017 REACH2017 comptox TRUE
KEMIWW_WDUIndex KEMIWW_WDUIndex comptox TRUE
KEMIWW_StpSE KEMIWW_StpSE comptox TRUE
KEMIWW_SEHitsOverDL KEMIWW_SEHitsOverDL comptox TRUE
ZINC15PHARMA ZINC15PHARMA comptox TRUE

PFASMASTER PFASMASTER comptox TRUE
peakFingerprintScore AutomatedPeakFingerprintAnnotationScore FALSE
lossFingerprintScore AutomatedLossFingerprintAnnotationScore FALSE
agroChemInfo AgroChemInfo pubchemlite FALSE
bioPathway BioPathway pubchemlite FALSE

drugMedicInfo DrugMedicInfo pubchemlite FALSE
foodRelated FoodRelated pubchemlite FALSE
pharmacoInfo PharmacoInfo pubchemlite FALSE
safetyInfo SafetyInfo pubchemlite FALSE
toxicityInfo ToxicityInfo pubchemlite FALSE

knownUse KnownUse pubchemlite FALSE
disorderDisease DisorderDisease pubchemlite FALSE
identification Identification pubchemlite FALSE
annoTypeCount FPSum pubchemlite TRUE
annoTypeCount AnnoTypeCount pubchemlite TRUE

annotHitCount AnnotHitCount pubchemlite TRUE
libMatch TRUE

The first two columns contain the generic and original MetFrag naming schemes for each scoring type.
While both naming schemes can be used, the generic is often shorter and harmonized with other algorithms
(e.g. SIRIUS). The database column specifies for which databases a particular scoring is available (empty if
not database specific). Most scorings are selected by default (as specified by the default column), however,
this behaviour can be customized by using the scoreTypes argument:
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# Only in-silico and PubChem number of patents scorings
compsMF1 <- generateCompounds(fGroups, mslists, "metfrag", adduct = "[M+H]+",

scoreTypes = c("fragScore" "numberPatents"))

# Custom scoring in custom database
compsMF2 <- generateCompounds(fGroups, mslists, "metfrag", adduct = "[M+H]+",

database = "csv",
extraOpts = list(LocalDatabasePath = "~/mydb.csv"),
scoreTypes = c("fragScore", "myScore", "myScore2"))

By default ranking is performed with equal weight (i.e. 1 ) for all scorings. This can be changed by the
scoreWeights argument, which should be a vector containing the weights for all scorings following the
order of scoreTypes, for instance:

compsMF <- generateCompounds(fGroups, mslists, "metfrag", adduct = "[M+H]+",
scoreTypes = c("fragScore" "numberPatents"),
scoreWeights = c(1, 2))

Sometimes thousands or more structural candidates are found when annotating a feature group. In this
situation processing all these candidates will too involving (especially when external databases are used). To
avoid this a default cut-off is set: when the number of candidates exceed a certain amount the search will
be aborted and no results will be reported for that feature group. The maximum number of candidates can
be set with the maxCandidatesToStop argument. The default value is relative conservative, especially for
local databases it may be useful to increase this number.

4.6.3.3 MetFrag error and timeout handling The use of online databases has the drawback that
an error may occur, for instance, as a result of a connection error or when the aforementioned maximum
number of candidates is reached (maxCandidatesToStop argument). By default, the processing is restarted
if an error has occurred (configured by the errorRetries argument). Similarly, the timeoutRetries and
timeout arguments can be used to avoid being ‘stuck’ on obtaining results, for instance, due to an unstable
internet connection. If no compounds could be assigned due to an error a warning will be issued. In this
case it is best to see what went wrong by manually checking the log files, which by default are stored in the
log/metfrag folder.

4.6.3.4 Annotation with the Library algorithm To use the Library algorithm we first need to load
an MS library. Currently, MS libraries in the MSP and MoNA JSON formats are supported. Note that the
former format is not so well standardized, and the support in patRoon was mainly tailored for MSP files
from MassBank.eu and MoNA. To load the MS library the loadMSLibrary() function is used:

mslibrary <- loadMSLibrary("~/MassBank_NIST.msp", "msp") # MassBank.eu MSP library
mslibrary <- loadMSLibrary("~/MoNA-export-CASMI_2016.msp", "msp") # MoNA MSP library
mslibrary <- loadMSLibrary("~/MoNA-export-MassBank.json", "json") # MoNA JSON library

NOTE Currently it is only possible to load formula annotated MS/MS peaks with the MoNA
JSON format.

Once loaded, the MS library can be post-processed with various filtering, subsetting and export functionality,
which may be useful for more tailored compound annotation. This is further discussed in the advanced
chapter.

The compound annotation is performed with generateCompounds():
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compsLib <- generateCompounds(fGroups, mslists, "library", MSLibrary = mslibrary)

# set minimum MS/MS spectral match for candidates to 0.5
compsLib <- generateCompounds(fGroups, mslists, "library", MSLibrary = mslibrary, minSim

= 0.5)↪→

4.6.3.5 Formula scoring Ranking of candidate structures may further be improved by incorporating
formula information by using the addFormulaScoring() function:

comps <- addFormulaScoring(coms, formulas, updateScore = TRUE)

Here, corresponding formula and explained fragments will be used to calculate a formulaScore for each
candidate. Note that SIRIUS candidates are already based on calculated formulae, hence, running this
function on SIRIUS results is less sensible unless scoring from another formula calculation algorithm is
desired.

4.6.3.6 Further options and parameters There are many more options and parameters that affect
compound annotation. For a full overview please have a look at the reference manual (e.g. by running
?generateCompounds).

4.6.4 Suspect annotation

The data obtained during the previously described annotation steps can be used to improve a suspect screen-
ing workflow. The annotateSuspects() method uses the annotation data to calculate various annotation
properties for each suspect, such as their rank in formula/compound candidates, which fragments from the
suspect list were matched, and a rough indication of the identification level according to Schymanski et al.
(2014)

fGroupsSusp <- annotateSuspects(fGroupsSusp, MSPeakLists = mslists,
formulas = formulas, compounds = compounds)

The calculation of identification levels is performed by a set of pre-defined rules. The genIDLevelRulesFile()
can be used to inspect the default rules or to create your own rules file, which can subsequently passed
to annotateSuspects() with the IDFile argument. See ?annotateSuspects for more details on the file
format and options. The default identification levels can be summarized as follows:

Level Description Rules
1 Target match Retention time deviates <12 seconds from suspect list. At least 3

(or all if the suspect list contains less) fragments from the suspect
list must match.

2a Good MS/MS library
match

Suspect is top ranked in the compounds results. The
individualMoNAScore (MetFrag) or libMatch (Library algorithm)
is at least 0.9 and no other candidates were matched with the MS
library.

3a Fair library match The individualMoNAScore or libMatch is at least 0.4.
3b Known MS/MS match At least 3 (or all if the suspect list contains less) fragments from

the suspect list must match.
3c Good in-silico MS/MS

match
The annotation MS/MS similarity (annSimComp column) is at least
0.7.
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Level Description Rules
4a Good formula MS/MS

match
Suspect is top ranked formula candidate, annotation MS/MS
similarity (annSimForm column) is at least 0.7 and isotopic match
(isoScore) of at least 0.5. The latter two scores are at least 0.2
higher than next best ranked candidate.

4b Good formula isotopic
pattern match

Suspect is top ranked formula candidate and isotopic match
(isoScore) of at least 0.9 and at least 0.2 higher than next best
ranked candidate.

5 Unknown All else.

In general, the more data provided by the suspect list and to annotateSuspects(), the better identifica-
tion level estimation works. For instance, when considering the default rules, either the fragments_mz or
fragments_formula column is necessary to be able assign a level 3b. Similarly, the suspect list needs
retention times (as well as fragment data) to be able to assign level 1. As you can imagine, providing the
annotation workflow objects (i.e. MSPeakLists, formulas, compounds) to annotateSuspects() is necessary
for calculation of most levels.

The annotateSuspects() function will log decisions for identification level assignments to the log/ sub-
directory in the current working directory. This is useful to inspect level assignments and especially useful
when you customized any rules.

NOTE: The current identification level rules are only optimized for GenForm and MetFrag
annotation algorithms.

4.6.5 Account login for SIRIUS

Recent version of SIRIUS require an active account login to make queries to CSI:FingerID. This is primarily
relevant when performing a compound annotation workflow with SIRIUS or a formula annotation workflow
with getFingerprints=TRUE, e.g. when predicting toxicities or concentrations.

As a first step, please create an account as described in the SIRIUS documentation: https://v6.docs.sirius-
ms.io/account-and-license/.

Then, to login there are two options:

1. Manually login: either by using the SIRIUS GUI or the CLI. For the latter, see e.g. sirius.exe login
--help for more details.

2. Let patRoon automatically handle logins.

The login parameter for generateCompounds() and generateFormulas() determines how logins are dealt
with by patRoon. There are four options:

1. login=FALSE: no logins are performed and no checks are performed to verify if there is an existing
login.

2. login="check": no logins are performed, but an active login is required to proceed.
3. login="interactive": if no active login is present, then the username and password will be asked

interactively and used to automatically login.
4. login=c(username="...", password="..."): if no active login is present, then the provided user-

name and password will be used to automatically login.

NOTE: For the fourth option, please don’t provide the login details directly as plain-text for
security reasons. See below for proper alternatives.
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The first two options are primarily meant for manual login. The function parameter alwaysLogin=TRUE can
be set to force a login for the third and fourth options.

The fourth option is primarily useful for e.g. heavy users of SIRIUS or unattended automatic workflows.
To securely provide the login details, it is best to store them elsewhere. This webpage provides a detailed
overview of how credentials can be safely stored. For instance, you can save the credentials in your .Renviron
file and retreieve them when calling generateCompounds():

In your .Renviron file add:

SIRIUS_USERNAME=MY_USERNAME
SIRIUS_PASSWORD=MY_PASSWORD

and then in your R script:

compounds <- generateCompounds(..., login = c(username = Sys.getenv("SIRIUS_USERNAME"),
password = Sys.getenv("SIRIUS_PASSWORD")))

Alternatively, you could use the keyring package, e.g.

install.packages("keyring") # execute in case you don't have keyring installed yet
keyring::key_set("SIRIUS", username = "myaccount@email.com") # execute this once to store

the password↪→

compounds <- generateCompounds(..., login = c(username = "myaccount@email.com",
password = keyring::key_get("SIRIUS",

"myaccount@email.com"))))↪→

5 Processing workflow data

The previous chapter mainly discussed how to create workflow data. This chapter will discuss how to use
the data.

5.1 Inspecting results

Several generic functions exist that can be used to inspect data that is stored in a particular object (e.g. fea-
tures, compounds etc):

Generic Classes Remarks
length() All Returns the length of the object

(e.g. number of features,
compounds etc)

algorithm() All Returns the name of the algorithm
used to generate the object.

groupNames() All Returns all the unique identitifiers
(or names) of the feature groups
for which this object contains
results.
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Generic Classes Remarks
names() featureGroups,

components
Returns names of the feature
groups (similar to groupNames())
or components

show() All Prints general information.
"[[" / "$" operators All Extract general information, see

below.
as.data.table() / as.data.frame() All Convert data to a data.table or

data.frame, see below.
analysisInfo(), analyses(),
replicateGroups()

features,
featureGroups

Returns the analysis information,
analyses or replicate groups for
which this object contains data.

groupInfo() featureGroups Returns feature group information
(m/z and retention time values).

screenInfo() featureGroupsScreening Returns information on hits from
suspect screening.

componentInfo() components Returns information for all
components.

annotatedPeakList() formulas, compounds Returns a table with annotated
mass peaks (see below).

The common R extraction operators "[[", "$" can be used to obtain data for a particular feature groups,
analysis etc:

# Feature table (only first columns for readability)
fList[["standard-1"]][, 1:6]

#> NULL

# Feature group intensities
fGroups$M120_R268_30

#> [1] 264836 245372 216560

fGroups[[1, "M120_R268_30"]] # only first analysis

#> [1] 264836

# obtains MS/MS peak list (feature group averaged data)
mslists[["M120_R268_30"]]$MSMS

#> ID mz intensity precursor
#> <int> <num> <num> <lgcl>
#> 1: 5 105.0698 6183.111 FALSE
#> 2: 6 106.0653 7643.556 FALSE
#> 3: 8 107.0728 7760.667 FALSE
#> 4: 15 120.0556 168522.667 TRUE
#> 5: 17 121.0587 13894.667 FALSE
#> 6: 18 121.0884 10032.889 FALSE
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#> 7: 19 122.0964 147667.778 FALSE
#> 8: 20 123.0803 36631.111 FALSE
#> 9: 21 123.0996 15482.444 FALSE
#> 10: 22 124.0805 35580.667 FALSE

# get all formula candidates for a feature group
formulas[["M120_R268_30"]][, 1:7]

#> neutral_formula ion_formula neutralMass ion_formula_mz error dbe isoScore
#> <char> <char> <num> <num> <num> <num> <num>
#> 1: C6H5N3 C6H6N3 119.0483 120.0556 1.8 6 0.92461

# get all compound candidates for a feature group
compounds[["M120_R268_30"]][, 1:4]

#> explainedPeaks score neutralMass SMILES
#> <int> <num> <num> <char>
#> 1: 0 2.9919045 119.0483 C1=CC2=NNN=C2C=C1
#> 2: 0 1.2504308 119.0483 C1=CNC2=CN=CN=C21
#> 3: 0 1.2336169 119.0483 C1=CC2=C(N=C1)N=CN2
#> 4: 0 1.2079701 119.0483 C1=CC2=C(C=NN2)N=C1
#> 5: 0 1.1511570 119.0483 C1=CN2C(=CC=N2)N=C1
#> ---
#> 37: 0 0.9541662 119.0483 CC1=CN=C(N=C1)C#N
#> 38: 0 0.9535093 119.0483 CC1=NC(=NC=C1)C#N
#> 39: 0 0.9499092 119.0483 CC1=NN=C(C=C1)C#N
#> 40: 0 0.8128595 119.0483 C1=CC(=[N+]=[N-])C=CC1=N
#> 41: 0 0.7438038 119.0483 C(C#N)C(CC#N)C#N

# get a table with information of a component
components[["CMP7"]][, 1:6]

#> group ret mz isogroup isonr charge
#> <char> <num> <num> <num> <num> <num>
#> 1: M143_R206_64 205.787 143.0700 NA NA NA
#> 2: M159_R208_103 208.280 159.0650 NA NA NA
#> 3: M161_R208_104 207.582 161.0806 NA NA NA
#> 4: M181_R209_159 208.580 181.0469 NA NA NA

A more sophisticated way to obtain data from a workflow object is to use as.data.table() or
as.data.frame(). These functions will convert all information within the object to a table (data.table or
data.frame) and allow various options to add extra information. An advantage is that this common data
format can be used with many other functions within R. The output is in a tidy format.

NOTE If you are not familiar with data.table and want to know more see data.table. Briefly,
this is a more efficient and largely compatible alternative to the regular data.frame.

NOTE The as.data.frame() methods defined in patRoon simply convert the results from
as.data.table(), hence, both functions are equal in their usage and are defined for the same
object classes.
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Some typical examples are shown below.

# obtain table with all features (only first columns for readability)
as.data.table(fList)[, 1:6]

#> analysis ID ret mz area intensity
#> <char> <char> <num> <num> <num> <num>
#> 1: solvent-pos-1 f_1111264393868911102 13.176 98.97537 4345232.0 391476
#> 2: solvent-pos-1 f_2094520183844760528 7.181 100.11197 797112.1 426956
#> 3: solvent-pos-1 f_7941927790353320269 192.178 100.11211 9609998.0 750532
#> 4: solvent-pos-1 f_16909335299782523620 19.171 100.11217 5784411.0 370376
#> 5: solvent-pos-1 f_6221034045034627155 4.786 100.11220 551723.6 567312
#> ---
#> 2922: standard-pos-3 f_11654918892462341096 318.892 425.18866 666531.5 232636
#> 2923: standard-pos-3 f_15952415959529491179 9.114 427.03242 362024.1 114744
#> 2924: standard-pos-3 f_12161494855555353140 318.892 427.18678 200193.5 77768
#> 2925: standard-pos-3 f_13430643112055510340 382.682 432.23984 217612.9 97648
#> 2926: standard-pos-3 f_12072347617435122911 9.114 433.00457 3086864.0 912920

# Returns group info and intensity values for each feature group
as.data.table(fGroups, average = TRUE) # average intensities for replicates

#> group ret mz standard-pos
#> <char> <num> <num> <num>
#> 1: M109_R192_20 191.8717 109.0759 183482.67
#> 2: M111_R330_23 330.4078 111.0439 84598.67
#> 3: M114_R269_25 268.6906 114.0912 85796.00
#> 4: M116_R317_29 316.7334 116.0527 766888.00
#> 5: M120_R268_30 268.4078 120.0554 242256.00
#> ---
#> 137: M316_R363_635 363.4879 316.1741 89904.00
#> 138: M318_R349_638 349.1072 318.1450 83320.00
#> 139: M352_R335_664 334.9403 352.2019 74986.67
#> 140: M407_R239_672 239.3567 407.2227 186568.00
#> 141: M425_R319_676 319.4944 425.1885 214990.67

# As above, but with suspect matches on separate rows and additional screening
information↪→

# (select some columns to simplify the output below)
as.data.table(fGroupsSusp, average = TRUE, collapseSuspects = NULL,

onlyHits = TRUE)[, c("group", "susp_name", "susp_compRank",
"susp_annSimBoth", "susp_estIDLevel")]↪→

#> group susp_name susp_compRank susp_annSimBoth susp_estIDLevel
#> <char> <char> <int> <num> <char>
#> 1: M120_R268_30 1H-benzotriazole 1 0.0000000 4b
#> 2: M137_R249_53 N-Phenyl urea 1 0.6443557 3a
#> 3: M146_R309_68 2-Hydroxyquinoline 2 0.9896892 3a
#> 4: M146_R248_69 2-Hydroxyquinoline NA NA 5
#> 5: M146_R225_70 2-Hydroxyquinoline NA NA 5
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# Returns all peak lists for each feature group
as.data.table(mslists)

#> group type ID mz intensity precursor
#> <char> <char> <int> <num> <num> <lgcl>
#> 1: M120_R268_30 MS 1 100.1120 178952.381 FALSE
#> 2: M120_R268_30 MS 2 102.1277 202359.667 FALSE
#> 3: M120_R268_30 MS 3 114.0912 37647.548 FALSE
#> 4: M120_R268_30 MS 4 115.0752 66685.238 FALSE
#> 5: M120_R268_30 MS 5 120.0554 113335.857 TRUE
#> ---
#> 235: M192_R355_191 MS 51 299.1274 44083.126 FALSE
#> 236: M192_R355_191 MS 52 299.1471 7390.267 FALSE
#> 237: M192_R355_191 MSMS 14 119.0496 588372.444 FALSE
#> 238: M192_R355_191 MSMS 18 120.0524 70273.333 FALSE
#> 239: M192_R355_191 MSMS 31 192.1384 71978.667 TRUE

# Returns all formula candidates for each feature group with scoring
# information, neutral loss etc
as.data.table(formulas)[, 1:6]

#> group neutral_formula ion_formula neutralMass ion_formula_mz error
#> <char> <char> <char> <num> <num> <num>
#> 1: M120_R268_30 C6H5N3 C6H6N3 119.0483 120.0556 1.80000000
#> 2: M137_R249_53 C7H8N2O C7H9N2O 136.0637 137.0709 2.90000000
#> 3: M146_R309_68 C9H7NO C9H8NO 145.0528 146.0600 1.66666667
#> 4: M192_R355_191 C12H17NO C12H18NO 191.1310 192.1383 0.03333333

# Returns all compound candidates for each feature group with scoring and other metadata
as.data.table(compounds)[, 1:4]

#> group explainedPeaks score neutralMass
#> <char> <int> <num> <num>
#> 1: M120_R268_30 0 2.991905 119.0483
#> 2: M120_R268_30 0 1.250431 119.0483
#> 3: M120_R268_30 0 1.233617 119.0483
#> 4: M120_R268_30 0 1.207970 119.0483
#> 5: M120_R268_30 0 1.151157 119.0483
#> ---
#> 288: M192_R355_191 1 1.367332 191.1310
#> 289: M192_R355_191 1 1.367220 191.1310
#> 290: M192_R355_191 1 1.366424 191.1310
#> 291: M192_R355_191 1 1.364403 191.1310
#> 292: M192_R355_191 1 1.363116 191.1310

# Returns table with all components (including feature group info, annotations etc)
as.data.table(components)[, 1:6]

#> name cmp_ret cmp_retsd neutral_mass analysis size
#> <char> <num> <num> <char> <char> <int>
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#> 1: CMP1 347.2914 0.0000000 <NA> standard-pos-2 2
#> 2: CMP1 347.2914 0.0000000 <NA> standard-pos-2 2
#> 3: CMP2 349.6328 4.6804985 225.1589/188.20157 standard-pos-3 6
#> 4: CMP2 349.6328 4.6804985 225.1589/188.20157 standard-pos-3 6
#> 5: CMP2 349.6328 4.6804985 225.1589/188.20157 standard-pos-3 6
#> ---
#> 88: CMP29 313.3475 0.3105035 <NA> standard-pos-2 3
#> 89: CMP29 313.3475 0.3105035 <NA> standard-pos-2 3
#> 90: CMP30 268.3430 0.3840764 81.08705 standard-pos-1 3
#> 91: CMP30 268.3430 0.3840764 81.08705 standard-pos-1 3
#> 92: CMP30 268.3430 0.3840764 81.08705 standard-pos-1 3

Finally, the annotatedPeakList() function is useful to inspect annotation results for a formula or compound
candidate:

# formula annotations for the first formula candidate of feature group M137_R249_53
annotatedPeakList(formulas, index = 1, groupName = "M137_R249_53",

MSPeakLists = mslists)

#> ID mz intensity precursor ion_formula dbe ion_formula_mz error neutral_loss annotated
#> <int> <num> <num> <lgcl> <char> <num> <num> <num> <char> <lgcl>
#> 1: 2 94.06500 9406.111 FALSE C6H8N 3.5 94.06513 1.30 CHNO TRUE
#> 2: 6 98.97522 2212.000 FALSE <NA> NA NA NA <NA> FALSE
#> 3: 7 105.06971 1662.111 FALSE <NA> NA NA NA <NA> FALSE
#> 4: 14 120.04434 7176.222 FALSE C7H6NO 5.5 120.04439 0.40 H3N TRUE
#> 5: 19 122.07222 2246.000 FALSE <NA> NA NA NA <NA> FALSE
#> 6: 21 135.08004 1565.556 FALSE <NA> NA NA NA <NA> FALSE
#> 7: 23 137.07039 5348.667 TRUE C7H9N2O 4.5 137.07094 3.35 TRUE
#> 8: 24 137.09572 2026.889 FALSE <NA> NA NA NA <NA> FALSE
#> 9: 26 138.09116 12356.667 FALSE <NA> NA NA NA <NA> FALSE
#> 10: 27 139.07503 5020.667 FALSE <NA> NA NA NA <NA> FALSE

# compound annotation for first candidate of feature group M137_R249_53
annotatedPeakList(compounds, index = 1, groupName = "M137_R249_53",

MSPeakLists = mslists)

#> ID mz intensity precursor ion_formula ion_formula_MF neutral_loss score annotated
#> <int> <num> <num> <lgcl> <char> <char> <char> <num> <lgcl>
#> 1: 2 94.06500 9406.111 FALSE C6H8N [C6H6N+H]+H+ CHNO 405 TRUE
#> 2: 6 98.97522 2212.000 FALSE <NA> <NA> <NA> NA FALSE
#> 3: 7 105.06971 1662.111 FALSE <NA> <NA> <NA> NA FALSE
#> 4: 14 120.04434 7176.222 FALSE C7H6NO [C7H6NO]+ H3N 305 TRUE
#> 5: 19 122.07222 2246.000 FALSE <NA> <NA> <NA> NA FALSE
#> 6: 21 135.08004 1565.556 FALSE <NA> <NA> <NA> NA FALSE
#> 7: 23 137.07039 5348.667 TRUE <NA> <NA> <NA> NA FALSE
#> 8: 24 137.09572 2026.889 FALSE <NA> <NA> <NA> NA FALSE
#> 9: 26 138.09116 12356.667 FALSE <NA> <NA> <NA> NA FALSE
#> 10: 27 139.07503 5020.667 FALSE <NA> <NA> <NA> NA FALSE

More advanced examples for these functions are shown below.

41



# Feature table, can also be accessed by numeric index
fList[[1]]
mslists[["standard-1", "M120_R268_30"]] # feature data (instead of feature group

averaged)↪→

formulas[[1, "M120_R268_30"]] # feature data (if available, i.e. calculateFeatures=TRUE)
components[["CMP1", 1]] # only for first feature group in component

as.data.frame(fList) # classic data.frame format, works for all objects
as.data.table(fGroups) # return non-averaged intensities (default)
as.data.table(fGroups, features = TRUE) # include feature information
as.data.table(mslists, averaged = FALSE) # peak lists for each feature
as.data.table(mslists, fGroups = fGroups) # add feature group information

as.data.table(formulas, countElements = c("C", "H")) # include C/H counts (e.g. for van
Krevelen plots)↪→

# add various information for organic matter characterization (common elemental
# counts/ratios, classifications etc)
as.data.table(formulas, OM = TRUE)

as.data.table(compounds, fGroups = fGroups) # add feature group information
as.data.table(compounds, fragments = TRUE) # include information of all annotated

fragments↪→

annotatedPeakList(formulas, index = 1, groupName = "M120_R268_30",
MSPeakLists = mslists, onlyAnnotated = TRUE) # only include annotated

peaks↪→

annotatedPeakList(compounds, index = 1, groupName = "M120_R268_30",
MSPeakLists = mslists, formulas = formulas) # include formula

annotations↪→

5.2 Filtering

During a non-target workflow it is not uncommon that some kind of data-cleanup is necessary. Datasets are
often highly complex, which makes separating data of interest from the rest highly important. Furthermore,
general cleanup typically improves the quality of the dataset, for instance by removing low scoring annotation
results or features that are unlikely to be ‘correct’ (e.g. noise or present in blanks). For this reason patRoon
supports many different filters that easily clean data produced during the workflow in a highly customizable
way.

All major workflow objects (e.g. featureGroups, compounds, components etc.) support filtering operations
by the filter() generic. This function takes the object to be filtered as first argument and any remaining
arguments describe the desired filter options. The filter() generic function then returns the modified
object back. Some examples are shown below.

# remove low intensity (<500) features
features <- filter(features, absMinIntensity = 500)

# remove features with intensities lower than 5 times the blank
fGroups <- filter(fGroups, blankThreshold = 5)

# only retain compounds with >1 explained MS/MS peaks
compounds <- filter(compounds, minExplainedPeaks = 1)
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The following sections will provide a more detailed overview of available data filters.

NOTE Some other R packages (notably dplyr) also provide a filter() generic function.
To use the filter() function from different packages you may need to explicitly specify
which one to use in your script. This can be done by prefixing it with the package name,
e.g. patRoon::filter(...), dplyr::filter(...) etc.

5.2.1 Features

There are many filters available for feature data:

Filter Classes Remarks
absMinIntensity,
relMinIntensity

features,
featureGroups

Minimum intensity

preAbsMinIntensity,
preRelMinIntensity

featureGroups Minimum intensity prior to other filtering
(see below)

retentionRange, mzRange,
mzDefectRange,
chromWidthRange

features,
featureGroups

Filter by feature properties

absMinAnalyses,
relMinAnalyses

featureGroups Minimum feature abundance in all analyses

absMinReplicates,
relMinReplicates

featureGroups Minimum feature abundance in different
replicates

absMinFeatures,
relMinFeatures

featureGroups Only keep analyses with at least this amount
of features

absMinReplicateAbundance,
relMinReplicateAbundance

featureGroups Minimum feature abundance in a replicate
group

maxReplicateIntRSD featureGroups Maximum relative standard deviation of
feature intensities in a replicate group.

blankThreshold featureGroups Minimum intensity factor above blank
intensity

rGroups featureGroups Only keep (features of) these replicate groups
results featureGroups Only keep feature groups with

formula/compound annotations or
componentization results

Application of filters to feature data is important for (environmental) non-target analysis. Especially blank
and replicate filters (i.e. blankThreshold and absMinReplicateAbundance/relMinReplicateAbundance)
are important filters and are highly recommended to always apply for cleaning up your dataset.

All filters are available for feature group data, whereas only a subset is available for feature objects. The
main reason is that other filters need grouping of features between analyses. Regardless, in patRoon filtering
feature data is less important, and typically only needed when the number of features are extremely large
and direct grouping is undesired.

From the table above you can notice that many filters concern both absolute and relative data (i.e. as prefixed
with abs and rel). When a relative filter is used the value is scaled between 0 and 1. For instance:

# remove features not present in at least half of the analyses within a replicate group
fGroups <- filter(fGroups, relMinReplicateAbundance = 0.5)
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An advantage of relative filters is that you will not have to worry about the data size involved. For instance,
in the above example the filter always takes half of the number of analyses within a replicate group, even
when replicate groups have different number of analyses.

Note that multiple filters can be specified at once. Especially for feature group data the order of filtering
may impact the final results, this is explained further in the reference manual (i.e. ?`feature-filtering`).

Some examples are shown below.

# filter features prior to grouping: remove any features eluting before first 2 minutes
fList <- filter(fList, retentionRange = c(120, Inf))

# common filters for feature groups
fGroups <- filter(fGroups,

absMinIntensity = 500, # remove features <500 intensity
relMinReplicateAbundance = 1, # features should be in all analysis of

replicate groups↪→

maxReplicateIntRSD = 0.75, # remove features with intensity RSD in
replicates >75%↪→

blankThreshold = 5, # remove features <5x intensity of (average) blank
intensity↪→

removeBlanks = TRUE) # remove blank analyses from object afterwards

# filter by feature properties
fGroups <- filter(fGroups,

mzDefectRange = c(0.8, 0.9),
chromWidthRange = c(6, 120))

# remove features not present in at least 3 analyses
fGroups <- filter(fGroups, absMinAnalyses = 3)

# remove features not present in at least 20% of all replicate groups
fGroups <- filter(fGroups, relMinReplicates = 0.2)

# only keep data present in replicate groups "repl1" and "repl2"
# all other features and analyses will be removed
fGroups <- filter(fGroups, rGroups = c("repl1", "repl2"))

# only keep feature groups with compound annotations
fGroups <- filter(fGroups, results = compounds)
# only keep feature groups with formula or compound annotations
fGroups <- filter(fGroups, results = list(formulas, compounds))

5.2.2 Suspect screening

Several additional filters are available for feature groups obtained with screenSuspects():

Filter Classes Remarks
onlyHits featureGroupsScreeningOnly retain feature groups assigned to one or

more suspects.
selectHitsBy featureGroupsScreeningSelect the feature group that matches best with

a suspect (in case there are multiple).
selectBestFGroups featureGroupsScreeningSelect the suspect that matches best with a

feature group (in case there are multiple).
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Filter Classes Remarks
maxLevel, maxFormRank,
maxCompRank

featureGroupsScreeningOnly retain suspect hits with
identification/annotation ranks below a
threshold.

minAnnSimForm, minAnnSimComp,
minAnnSimBoth

featureGroupsScreeningRemove suspect hits with annotation similarity
scores below this value.

absMinFragMatches,
relMinFragMatches

featureGroupsScreeningOnly keep suspect hits with a minimum
(relative) number of fragment matches from
the suspect list.

NOTE: most filters only remove suspect hit results. Set onlyHits=TRUE to also remove any
feature groups that end up without suspect hits.

The selectHitsBy and selectBestFGroups filters are useful to remove duplicate hits, i.e. the same suspect
assigned to multiple feature groups or multiple suspects assigned to the same feature group, respectively. The
former selects based on either best identification level (selectHitsBy="level") or highest mean intensity
(selectHitsBy="intensity"). The selectBestFGroups can only be TRUE/FALSE and always selects by
best identification level.

Some examples are shown below.

# only keep feature groups assigned to at least one suspect
fGroupsSusp <- filter(fGroupsSusp, onlyHits = TRUE)
# remove duplicate suspect to feature group matches and keep the best
fGroupsSusp <- filter(fGroupsSusp, selectHitsBy = "level")
# remove suspect hits with ID levels >3 and make sure no feature groups
# are present without suspect hits afterwards
fGroupsSusp <- filter(fGroupsSusp, maxLevel = 3, onlyHits = TRUE)

5.2.3 Annotation

There are various filters available for handling annotation data:

Filter Classes Remarks
absMSIntThr, absMSMSIntThr,
relMSIntThr, relMSMSIntThr

MSPeakLists Minimum intensity of mass peaks

topMSPeaks, topMSMSPeaks MSPeakLists Only keep most intense mass peaks
withMSMS MSPeakLists Only keep results with MS/MS data
minMSMSPeaks MSPeakLists Only keep an MS/MS peak list if it

contains a minimum number of peaks
(excluding the precursor peak)

annotatedBy MSPeakLists Only keep MS/MS peaks that have
formula or compound annotations

minExplainedPeaks formulas, compounds Minimum number of annotated mass
peaks

elements, fragElements,
lossElements

formulas, compounds Restrain elemental composition

topMost formulas, compounds Only keep highest ranked candidates
minScore, minFragScore,
minFormulaScore

compounds Minimum compound scorings

scoreLimits formulas, compounds Minimum/Maximum scorings
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Filter Classes Remarks
OM formulas, compounds Only keep candidates with likely

elemental composition found in organic
matter

Several intensity related filters are available to clean-up MS peak list data. For instance, the
topMSPeaks/topMSMSPeaks filters provide a simple way to remove noisy data by only retaining a de-
fined number of most intense mass peaks. Note that none of these filters will remove the precursor mass
peak of the feature itself.

The filters applicable to formula and compound annotation generally concern minimal scoring or chemical
properties. The former is useful to remove unlikely candidates, whereas the second is useful to focus on
certain study specific chemical properties (e.g. known neutral losses).

Common examples are shown below.

# intensity filtering
mslists <- filter(mslists,

absMSIntThr = 500, # minimum MS mass peak intensity of 500
relMSMSIntThr = 0.1) # minimum MS/MS mass peak intensity of 10%

# only retain 10 most intens mass peaks
# (feature mass is always retained)
mslists <- filter(mslists, topMSPeaks = 10)

# remove MS/MS peaks without compound annotations
mslists <- filter(mslists, annotatedBy = compounds)

# remove MS/MS peaks not annotated by either a formula or compound candidate
mslists <- filter(mslists, annotatedBy = list(formulas, compounds))

# only keep formulae with 1-10 sulphur or phosphorus elements
formulas <- filter(formulas, elements = c("S1-10", "P1-10"))

# only keep candidates with MS/MS fragments that contain 1-10 carbons and 0-2 oxygens
formulas <- filter(formulas, fragElements = "C1-10O0-2")

# only keep candidates with CO2 neutral loss
formulas <- filter(formulas, lossElements = "CO2")

# only keep the 15 highest ranked candidates with at least 1 annotated MS/MS peak
compounds <- filter(compounds, minExplainedPeaks = 1, topMost = 15)

# minimum in-silico score
compounds <- filter(compounds, minFragScore = 10)

# candidate should be referenced in at least 1 patent
# (only works if database lists number of patents, e.g. PubChem)
compounds <- filter(compounds,

scoreLimits = list(numberPatents = c(1, Inf))

NOTE As of patRoon 2.0 MS peak lists are not re-generated after a filtering operation (unless
the reAverage parameter is explicity set to TRUE). The reason for this change is that re-averaging
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invalidates any formula/compound annotation data (e.g. used for plotting and reporting) that
were generated prior to the filter operation.

5.2.4 Components

Finally several filters are available for components:

Filter Remarks
size Minimum component size
adducts, isotopes Filter features by adduct/istopes

annotation
rtIncrement, mzIncrement Filter homologs by retention/mz

increment range

Note that these filters are only applied if the components contain the data the filter works on. For instance,
filtering by adducts will not affect components obtained from homologous series.

As before, some typical examples are shown below.

# only keep components with at least 4 features
componInt <- filter(componInt, minSize = 4)

# remove all features from components are not annotated as an adduct
componRC <- filter(componRC, adducts = TRUE)

# only keep protonated and sodium adducts
componRC <- filter(componRC, adducts = c("[M+H]+", "[M+Na]+"))

# remove all features not recognized as isotopes
componRC <- filter(componRC, isotopes = FALSE)

# only keep monoisotopic mass
componRC <- filter(componRC, isotopes = 0)

# min/max rt/mz increments for homologs
componNT <- filter(componNT, rtIncrement = c(10, 30),

mzIncrement = c(16, 50))

NOTE As mentioned before, components are still in a relative young development phase and
results should always be verified!

5.2.5 Negation

All filters support negation: if enabled all specified filters will be executed in an opposite manner. Negation
may not be so commonly used, but allows greater flexibility which is sometimes needed for advanced filtering
steps. Furthermore, it is also useful to specifically isolate the data that otherwise would have been removed.
Some examples are shown below.

# keep all features/analyses _not_ present from replicate groups "repl1" and "repl2"
fGroups <- filter(fGroups, rGroups = c("repl1", "repl2"), negate = TRUE)
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# only retain features with a mass defect outside 0.8-0.9
fGroups <- filter(fGroups, mzDefectRange = c(0.8, 0.9), negate = TRUE)

# remove duplicate suspect hits and only keep the _worst_ hit
fGroupsSusp <- filter(fGroupsSusp, selectHitsBy = "level", negate = TRUE)

# remove candidates with CO2 neutral loss
formulas <- filter(formulas, lossElements = "CO2", negate = TRUE)

# select 15 worst ranked candidates
compounds <- filter(compounds, topMost = 15, negate = TRUE)

# only keep components with <5 features
componInt <- filter(componInt, minSize = 5, negate = TRUE)

5.3 Subsetting

The previous section discussed the filter() generic function to perform various data cleaning operations.
A more generic way to select data is by subsetting: here you can manually specify which parts of an object
should be retained. Subsetting is supported for all workflow objects and is performed by the R subset
operator ("["). This operator either subsets by one or two arguments, which are referred to as the i and j
arguments.

Class Argument i Argument j Remarks
features analyses
featureGroups analyses feature groups
MSPeakLists analyses feature groups peak lists for feature groups will be re-averaged

when subset on analyses (by default)
formulas feature groups
compounds feature groups
components components feature groups

For objects that support two-dimensional subsetting (e.g. featureGroups, MSPeakLists), either the i or j
argument is optional. Furthermore, unlike subsetting a data.frame, the position of i and j does not change
when only one argument is specified:

df[1, 1] # subset data.frame by first row/column
df[1] # subset by first column
df[1, ] # subset by first row

fGroups[1, 1] # subset by first analysis/feature group
fGroups[, 1] # subset by first feature group (i.e. column)
fGroups[1] # subset by first analysis (i.e. row)

The subset operator allows three types of input:

• A logical vector: elements are selected if corresponding values are TRUE.
• A numeric vector: select elements by numeric index.
• A character vector: select elements by their name.
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When a logical vector is used as input it will be re-cycled if necessary. For instance, the following will select
by the first, third, fifth, etc. analysis.

fGroups[c(TRUE, FALSE)]

In order to select by a character you will need to know the names for each element. These can, for instance,
be obtained by the groupNames() (feature group names), analyses() (analysis names) and names() (names
for components or feature groups for featureGroups objects) generic functions.

Some more examples of common subsetting operations are shown below.

# select first three analyses
fList[1:3]

# select first three analyses and first 500 feature groups
fGroups[1:3, 1:500]

# select all feature groups from first component
fGroupsNT <- fGroups[, componNT[[1]]$group]

# only keep feature groups with formula annotation results
fGroupsForms <- fGroups[, groupNames(formulas)]

# only keep feature groups with either formula or compound annotation results
fGroupsAnn <- fGroups[, union(groupNames(formulas), groupNames(compounds))]

# select first 15 components
components[1:15]

# select by name
components[c("CMP1", "CMP5")]

# only retain feature groups in components for which compound annotations are
# available
components[, groupNames(compounds)]

In addition, feature groups can also be subset by given replicate groups or annotation/componentization
results (similar to filter()). Similarly, suspect screening results can also be subset by given suspect names.

# equal as filter(fGroups, rGroups = ...)
fGroups[rGroups = c("repl1", "repl2")]
# equal as filter(fGroups, results = ...)
fGroups[results = compounds]
# only keep feature groups assigned to given suspects
fGroupsSusp[suspects = c("1H-benzotriazole", "2-Hydroxyquinoline")]

NOTE As of patRoon 2.0 MS peak lists are not re-generated after a subsetting operation
(unless the reAverage parameter is explicity set to TRUE). The reason for this change is that
re-averaging invalidates any formula/compound annotation data (e.g. used for plotting and re-
porting) that were generated prior to the subset operation.
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5.3.1 Prioritization workflow

An important use case of subsetting is prioritization of data. For instance, after statistical analysis only
certain feature groups are deemed relevant for the rest of the workflow. A common prioritization workflow
is illustrated below:

During the first step the workflow object is converted to a suitable format, most often using the
as.data.frame() function. The converted data is then used as input for the prioritization strategy. Finally,
these results are then used to select the data of interest in the original object.

A very simplified example of such a process is shown below.

featTab <- as.data.frame(fGroups, average = TRUE)

# prioritization: sort by (averaged) intensity of the "sample" replicate group
# (from high to low) and then obtain the feature group identifiers of the top 5.
featTab <- featTab[order(featTab$standard, decreasing = TRUE), ]
groupsOfInterest <- featTab$group[1:5]

# subset the original data
fGroups <- fGroups[, groupsOfInterest]

# fGroups now only contains the feature groups for which intensity values in the
# "sample" replicate group were in the top 5

5.4 Deleting data

The delete() generic function can be used to manually delete workflow data. This function is used internally
within patRoon to implement filtering and subsetting operations, but may also be useful for advanced data
processing.

Like the subset operator this function accepts a i and j parameter to specify which data should be operated
on:

Class Argument i Argument j

features analysis feature index
featureGroups analysis feature group
formulas, compounds feature group candidate index
components component feature group

If i or j is not specified (NULL) then data is removed for the complete selection. Some examples are shown
below:

# delete 2nd feature in analysis-1
fList <- delete(fList, i = "analysis-1", j = 2)
# delete first ten features in all analyses
fList <- delete(fList, i = NULL, j = 1:10)
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# completely remove third/fourth analyses from feature groups
fGroups <- delete(fGroups, i = 3:4)
# delete specific feature group
fGroups <- delete(fGroups, j = "M120_R268_30")
# delete range of feature groups
fGroups <- delete(fGroups, j = 500:750)

# remove all results for a feature group
formulas <- delete(formulas, i = "M120_R268_30")

# remove top candidate for all feature groups
compounds <- delete(compounds, j = 1)

# remove a component
components <- delete(components, i = "CMP1")
# remove specific feature group from a component
components <- delete(components, i = "CMP1", j = "M120_R268_30")
# remove specific feature group from all components
components <- delete(components, j = "M120_R268_30")

The j parameter can also be a function: in this case it is called repeatedly on parts of the data to select
what should be deleted. How the function is called and what it should return depends on the workflow data
class:

Class
Called on
every First argument

Second
argument Return value

features analysis data.table with
features

analysis
name

Features indices (as integer or
logical)

featureGroups feature
group

vector with group
intensities

feature
group name

The analyses of the features to
remove (as character,
integer, logical)

formulas,
compounds

feature
group

data.table with
annotations

feature
group name

Candidate indices (rows)

components component data.table with the
component

component
name

The feature groups (as
character, integer)

Some examples for this:

# remove features with intensities below 5000
fList <- delete(fList, j = function(f, ...) f$intensity <= 5E3)

# same, but for features in all feature groups from specific analyses
fGroups <- delete(i = 1:3, j = function(g, ...) g <= 5E3)

# remove formula candidates with high relative mass deviation
formulas <- delete(formulas, j = function(ft, ...) ft$error > 5)

5.5 Unique and overlapping features

Often an analysis batch is composed of different sample groups, such as different treatments, influent/effluent
etc. In such scenarios it may be highly interesting to evaluate uniqueness or overlap between these samples.
Furthermore, extracting overlapping or unique features is a simple but effective prioritization strategy.
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The overlap() and unique() functions can be used to extract overlapping and unique features between
replicate groups, respectively. Both functions return a subset of the given featureGroups object. An
overview of their arguments is given below.

Argument Function(s) Remarks
which unique(), overlap() The replicate groups to compare.
relativeTo unique() Only return unique features compared to these replicate groups

(NULL for all). Replicate groups in which are ignored.
outer unique() If TRUE then only return features which are also unique among

the compared replicates groups.
exclusive overlap Only keep features that only overlap between the compared

replicate groups.

Some examples:

# only keep features uniquely present in replicate group "repl1"
fGroupsUn1 <- unique(fGroups, which = "repl1")
# only keep features in repl1/repl2 which are not in repl3
fGroupsUn2 <- unique(fGroups, which = c("repl1", "repl2"),

relativeTo = "repl3")
# only keep features that are only present in repl1 OR repl2
fGroupsUn3 <- unique(fGroups, which = c("repl1", "repl2"),

outer = TRUE)

# only keep features overlapping in repl1/repl2
fGroupsOv1 <- overlap(fGroups, which = c("repl1", "repl2"))
# only keep features overlapping in repl1/repl2 AND are not present in any other
# replicate group
fGroupsOv2 <- overlap(fGroups, which = c("repl1", "repl2"),

exclusive = TRUE)

In addition, several plotting functions are discussed in the visualization section that visualize overlap and
uniqueness of features.

5.6 MS similarity

The spectral similarity is used to compare spectra from different features. For this purpose the
spectrumSimilarity function can be used. This function operates on MS peak lists, and accepts the
following function arguments:

Argument Remarks
MSPeakLists The MS peak lists object from which peak lists data should be taken.
groupName1,
groupName2

The name(s) of the first and second feature group(s) to compare

analysis1, analysis2 The analysis names of the data to be compared. Set this when feature data
(instead of feature group data) should be compared.

MSLevel The MS level: 1 or 2 for MS and MS/MS, respectively.
specSimParams Parameters that define how similarities are calculated.
NAToZero If TRUE then NA values are converted to zeros. NA values are reported if a

comparison cannot be made because of missing peak list data.
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The specSimParams argument defines the parameters for similarity calculations. It is a list, and the default
values are obtained with the getDefSpecSimParams() function:

getDefSpecSimParams()

#> $method
#> [1] "cosine"
#>
#> $removePrecursor
#> [1] FALSE
#>
#> $mzWeight
#> [1] 0
#>
#> $intWeight
#> [1] 1
#>
#> $absMzDev
#> [1] 0.005
#>
#> $relMinIntensity
#> [1] 0.05
#>
#> $minPeaks
#> [1] 1
#>
#> $shift
#> [1] "none"
#>
#> $setCombineMethod
#> [1] "mean"

The method field describes the calculation measure: this is either "cosine" or "jaccard".

The shift field is primarily useful when comparing MS/MS data and defines if and how a spectral shift
should be performed prior to similarity calculation:

• "none": The default, no shifting is performed.
• "precursor" The mass difference between the precursor mass of both spectra (i.e. the feature mass) is

first calculated. This difference is then subtracted from each of the mass peaks of the second spectrum.
This shifting increases similarity if the MS fragmentation process itself occurs similarly (i.e. if both
features show similar neutral losses).

• "both” This combines both shifting methods: first peaks are aligned that have the same mass, then
the precursor strategy is applied for the remaining mass peaks. This shifting method yields higher
similarities if either fragment masses or neutral losses are similar.

To override a default setting, simply pass it as an argument to getDefSpecSimParams:

getDefSpecSimParams(shift = "both")

For more details on the various similarity calculation parameters see the reference manual (?getDefSpecSimParams).

Some examples are shown below:
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# similarity between MS spectra with default parameters
spectrumSimilarity(mslists, groupName1 = "M120_R268_30", groupName2 = "M137_R249_53")

#> [1] 0.4088499

# similarity between MS/MS spectra with default parameters
spectrumSimilarity(mslists, groupName1 = "M120_R268_30", groupName2 = "M192_R355_191",

MSLevel = 2)

#> [1] 0.08589848

# As above, with jaccard calculation
spectrumSimilarity(mslists, groupName1 = "M120_R268_30", groupName2 = "M192_R355_191",

MSLevel = 2, specSimParams = getDefSpecSimParams(method = "jaccard"))

#> [1] 0.1111111

# With shifting
spectrumSimilarity(mslists, groupName1 = "M120_R268_30", groupName2 = "M192_R355_191",

MSLevel = 2, specSimParams = getDefSpecSimParams(shift = "both"))

#> [1] 0.08589848

The spectrumSimilarity function can also be used to calculate multiple similarities. Simply specify multiple
feature group names for the groupNameX parameters. Alternatively, if you want to compare the same set of
feature groups with each other pass their names only as the groupName1 parameter:

# compare two pairs
spectrumSimilarity(mslists,

groupName1 = c("M120_R268_30", "M137_R249_53"),
groupName2 = c("M146_R309_68", "M192_R355_191"),
MSLevel = 2, specSimParams = getDefSpecSimParams(shift = "both"))

#> M146_R309_68 M192_R355_191
#> M120_R268_30 0.520052 0.08589848
#> M137_R249_53 0.197720 0.03372542

# compare all
spectrumSimilarity(mslists, groupName1 = groupNames(mslists),

MSLevel = 2, specSimParams = getDefSpecSimParams(shift = "both"))

#> M120_R268_30 M137_R249_53 M146_R309_68 M192_R355_191
#> M120_R268_30 1.00000000 0.20406381 0.52005204 0.08589848
#> M137_R249_53 0.20406381 1.00000000 0.19772004 0.03372542
#> M146_R309_68 0.52005204 0.19772004 1.00000000 0.08524785
#> M192_R355_191 0.08589848 0.03372542 0.08524785 1.00000000
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5.7 Visualization

5.7.1 Features and annatation data

Several generic functions are available to visualize feature and annotation data:

Generic Classes Remarks
plot() featureGroups,

featureGroupsComparison
Scatter plot for retention and m/z values

plotInt() featureGroups Intensity profiles across analyses
plotChroms() featureGroups, components Plot extracted ion chromatograms (EICs)
plotSpectrum()MSPeakLists, formulas, compounds,

components
Plots (annotated) spectra

plotStructure()compounds Draws candidate structures
plotScores() formulas, compounds Barplot with candidate scoring
plotGraph() componentsNT Draws interactive graphs of linked homologous

series

The most common plotting functions are plotChroms(), which plots chromatographic data for features,
and plotSpectrum(), which will plot (annotated) spectra. An overview of their most important function
arguments are shown below.

Argument Generic Remarks
retMin plotChroms() If TRUE plot retention times in minutes
EICParams plotChroms() Advanced parameters to control the creation of

extracted ion chromatograms (described below)
showPeakArea,
showFGroupRect

plotChroms() Fill peak areas / draw rectangles around
feature groups?

title plotChroms(),
plotSpectrum()

Override plot title

colourBy plotChroms() Colour individual feature groups ("fGroups")
or replicate groups ("rGroups"). By default
nothing is coloured ("none")

showLegend plotChroms() Display a legend? (only if colourBy!="none")
xlim, ylim plotChroms(),

plotSpectrum()
Override x/y axis ranges, i.e. to manually set
plotting range.

groupName, analysis,
precursor, index

plotSpectrum() What to plot. See examples below.

MSLevel plotSpectrum() Whether to plot an MS or MS/MS spectrum
(only MSPeakLists)

formulas plotSpectrum() Whether formula annotations should be added
(only compounds)

plotStruct plotSpectrum() Whether the structure should be added to the
plot (only compounds)

mincex plotSpectrum() Minimum annotation font size (only
formulas/compounds)

Note that we can use subsetting to select which feature data we want to plot, e.g.
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plotChroms(fGroups[1:2]) # only plot EICs from first and second analyses.

#> Verifying if your data is centroided... Done!
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plotChroms(fGroups[, 1]) # only plot all features of first group

#> Verifying if your data is centroided... Done!
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The plotStructure() function will draw a chemical structure for a compound candidate. In addition, this
function can draw the maximum common substructure (MCS) of multiple candidates in order to assess
common structural features.

# structure for first candidate
plotStructure(compounds, index = 1, groupName = "M120_R268_30")
# MCS for first three candidates
plotStructure(compounds, index = 1:3, groupName = "M120_R268_30")

Some other common and less common plotting operations are shown below.
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plot(fGroups) # simple scatter plot of retention and m/z values
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plotChroms(fGroups) # plot EICs for all features

#> Verifying if your data is centroided... Done!

0 100 200 300 400

0e
+

00
4e

+
05

8e
+

05

141 feature groups

Retention time (sec.)

In
te

ns
ity

plotChroms(fGroups[, 1], # only plot all features of first group
colourBy = "rGroup") # and mark them individually per replicate group

#> Verifying if your data is centroided... Done!
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plotChroms(components, index = 7, fGroups = fGroups) # EICs from a component

#> Verifying if your data is centroided... Done!
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M161_R208_104
M181_R209_159

plotSpectrum(mslists, "M120_R268_30") # non-annotated MS spectrum
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plotSpectrum(mslists, "M120_R268_30", MSLevel = 2) # non-annotated MS/MS spectrum
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# formula annotated spectrum
plotSpectrum(formulas, index = 1, groupName = "M120_R268_30",

MSPeakLists = mslists)
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# compound annotated spectrum, with added formula annotations
plotSpectrum(compounds, index = 1, groupName = "M120_R268_30", MSPeakLists = mslists,

formulas = formulas, plotStruct = TRUE)
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# custom intensity range (e.g. to zoom in)
plotSpectrum(compounds, index = 1, groupName = "M120_R268_30", MSPeakLists = mslists,

ylim = c(0, 5000), plotStruct = FALSE)
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plotSpectrum(components, index = 7) # component spectrum
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# Inspect homologous series
plotGraph(componNT)

5.7.1.1 Extracted Ion Chromatogram parameters The EICParams argument to plotChroms() is
used to specify more advanced parameters for the creation of extracted ion chromatograms (EICs). Some
parameters of interest:

Parameter Description
rtWindow Expands the EIC retention time range +/- the feature peak width (in

seconds). This is e.g. useful to zoom out.
topMost Only consider this amount of highest intensity features in a group.
topMostByRGroup If TRUE then the topMost parameter concerns the top most intense features

in a replicate group (e.g. topMost=1 would draw the most intense feature for
each replicate group).

onlyPresent Only create EICs for analyses where a feature was detected? Setting to
FALSE is useful to inspect if a feature was ‘missed’.

The parameters are configured by giving a named list to the EICParams argument. To obtain such a list
with default settings, the getDefEICParams() function can be used:

getDefEICParams()

#> $rtWindow
#> [1] 30
#>
#> $topMost
#> NULL
#>
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#> $topMostByRGroup
#> [1] FALSE
#>
#> $onlyPresent
#> [1] TRUE
#>
#> $mzExpWindow
#> [1] 0.001
#>
#> $setsAdductPos
#> [1] "[M+H]+"
#>
#> $setsAdductNeg
#> [1] "[M-H]-"

Any arguments specified to this function will alter the values of the returned parameter list. Some examples:

# investigate if any features were not detected in a feature group
plotChroms(fGroups[, 10], EICParams = getDefEICParams(onlyPresent = FALSE))

#> Verifying if your data is centroided... Done!
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# get overview of all feature groups
plotChroms(fGroups,

colourBy = "fGroup", # unique colour for each group
EICParams = getDefEICParams(topMost = 1), # only most intense feature in each

group↪→

showPeakArea = TRUE, # show integrated areas
showFGroupRect = FALSE,
showLegend = FALSE) # no legend (too busy for many feature groups)

#> Verifying if your data is centroided... Done!

61



0 100 200 300 400

0e
+

00
4e

+
05

8e
+

05

141 feature groups

Retention time (sec.)

In
te

ns
ity

The reference manual (?EICParams) gives a full detail on all parameters.

5.7.2 Overlapping and unique data

There are three functions that can be used to visualize overlap and uniqueness between data:

Generic Classes
plotVenn featureGroups, featureGroupsComparison, formulas, compounds
plotUpSet featureGroups, featureGroupsComparison, formulas, compounds
plotChord featureGroups, featureGroupsComparison

The most simple comparison plot is a Venn diagram (i.e. plotVenn()). This function is especially useful
for two or three-way comparisons. More complex comparisons are better visualized with UpSet diagrams
(i.e. plotUpSet()). Finally, chord diagrams (i.e. plotChord()) provide visually pleasing diagrams to assess
overlap between data.

These functions can either be used to compare feature data or different objects of the same type. The former
is typically used to compare overlap or uniqueness between features in different replicate groups, whereas
comparison between objects is useful to visualize differences in algorithmic output. Besides visualization,
note that both operations can also be performed to modify or combine objects (see unique and overlapping
features and algorithm consensus).

As usual, some examples are shown below.

plotUpSet(fGroups) # compare replicate groups
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plotVenn(fGroups, which = c("repl1", "repl2")) # compare some replicate groups

17333 433

repl2
repl1

plotChord(fGroups, average = TRUE) # overlap between replicate groups
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# compare with custom made groups
plotChord(fGroups, average = TRUE,

outer = c(repl1 = "grp1", repl2 = "grp1", repl3 = "grp2", repl4 = "grp3"))
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# compare GenForm and SIRIUS results
plotVenn(formsGF, formsSIR,

labels = c("GF", "SIR")) # manual labeling

410

SIR

GF

5.7.3 MS similarity

The plotSpectrum function is also useful to visually compare (annotated) spectra. This works for
MSPeakLists, formulas and compounds object data.

plotSpectrum(mslists, groupName = c("M120_R268_30", "M137_R249_53"), MSLevel = 2)
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plotSpectrum(compounds, groupName = c("M120_R268_30", "M146_R309_68"), index = c(1, 1),
MSPeakLists = mslists)
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The specSimParams argument, which was discussed in MS similarity, can be used to configure the similarity
calculation:

plotSpectrum(mslists, groupName = c("M120_R268_30", "M137_R249_53"), MSLevel = 2,
specSimParams = getDefSpecSimParams(shift = "both"))
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5.7.4 Hierarchical clustering results

In patRoon hierarchical clustering is used for some componentization algorithms and to cluster candidate
compounds with similar chemical structure (see compound clustering). The functions below can be used to
visualize their results.

Generic Classes Remarks
plot() All Plots a dendrogram
plotInt() componentsIntClust Plots normalized intensity profiles in a cluster
plotHeatMap() componentsIntClust Plots an heatmap
plotSilhouettes()componentsClust Plot silhouette information to determine the

cluster amount
plotStructure() compoundsCluster Plots the maximum common substructure

(MCS) of a cluster

plot(componInt) # dendrogram
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plot(compsClust, groupName = "M120_R268_30") # dendrogram for clustered compounds

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ta
ni

m
ot

o 
di

st

40 41 10 1 32 16 14 4 7 13 5 26 8 27 39 30 23 15 21 18 19 17 24 22 25 31 28 34 35 29 36 37 38 12 20 33 11 2 9 3 6

cluster

1
2
3
4

5
6
7
8

plotInt(componInt, index = 4) # intensities of 4th cluster
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plotHeatMap(componInt) # plot heatmap
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plotHeatMap(componInt, interactive = TRUE) # interactive heatmap (with zoom-in!)
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5.7.5 Generating EICs in DataAnalysis

If you have Bruker data and the DataAnalysis software installed, you can automatically add EIC data
in a DataAnalysis session. The addDAEIC() will do this for a single m/z in one analysis, whereas the
addAllDAEICs() function adds EICs for all features in a featureGroups object.

# add a single EIC with background subtraction
addDAEIC("mysample", "~/path/to/sample", mz = 120.1234, bgsubtr = TRUE)
# add TIC for MS/MS signal of precursor 120.1234 (value of mz is ignored for TICs)
addDAEIC("mysample", "~/path/to/sample", mz = 100, ctype = "TIC",

mtype = "MSMS", fragpath = "120.1234", name = "MSMS 120")

addAllDAEICs(fGroups) # add EICs for all features
addAllDAEICs(fGroups[, 1:50]) # as usual, subsetting can be used for partial data

5.8 Interactively explore and review data

The checkFeatures and checkComponents functions start a graphical user interface (GUI) which allows
you to interactively explore and review feature and components data, respectively.

checkFeatures(fGroups) # inspect features and feature groups
checkComponents(componCAM, fGroups) # inspect components

Both functions allow you to easily explore the data in an interactive way. Furthermore, these functions allow
you to remove unwanted data. This is useful to remove for example features that are actually noise and
feature groups that shouldn’t be in the same component. To remove an unwanted feature, feature group or
components, simply uncheck its ‘keep’ checkbox. The next step is to save the selections you made. A check
session is a file that stores which data should be removed. Once the session file is saved the filter function
can be used to actually remove the data:

fGroupsF <- filter(fGroups, checkFeaturesSession = TRUE)
componCAMF <- filter(componCAM, checkComponentsSession = TRUE)

If you saved the session and you re-launch the GUI it will restore the selections made earlier. The
clearSession argument can be used to fully clear a session before starting the GUI, hence, all the data
will be restored to their ‘keep state’.

checkFeatures(fGroups, clearSession = TRUE) # start GUI with fresh session

It is also possible to use multiple different sessions. This is especially useful if you do not want to overwrite
previous session data or want to inspect different objects. In this case the session file name should be
specified:

checkFeatures(fGroups, "mysession.yml")
fGroupsF <- filter(fGroups, checkFeaturesSession = "mysession.yml")

The default session names are "checked-features.yml" and "checked-components.yml" for feature and
component data, respectively.

The extension of session file names is .yml since the YAML file format is used. An advantage of this format
is that it is easily readable and editable with a text editor.
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Note that the session data is tied to the feature group names of your data. This means that, for instance,
when you re-group your feature data after changing some parameters, the session data you prepared earlier
cannot be used anymore. Since probably quite some manual work went into creating the session file, a special
function is available to import a session that was made for previous data. This function tries its best to
guess the new feature group name based on similarity of their retention times and m/z values.

checkFeatures(fGroups) # do manual inspection

fGroups <- groupFeatures(fList, ...) # re-group with different parameters

importCheckFeaturesSession("checked-features.yml", "checked-features-new.yml", fGroups)

checkFeatures(fGroups, session = "checked-features-new.yml") # inspect new data

Take care to monitor the messages that importCheckFeaturesSession may output, as it may be possible
that some ‘old’ feature groups are not found or are matched by multiple candidates of the new dataset.
Some additional parameters exist to the functions described in this section. As usualy check the reference
manual for more details (e.g. ?checkFeatures).

NOTE Although the GUI tools described here allow you to easily filter out results, it is highly
recommended to first prioritize your data to avoid doing a lot of unneeded manual work.

5.9 Reporting

The previous sections showed various functionality to inspect and visualize results. An easy way to do this
automatically is by using the reporting functionality of patRoon. There are currently two interfaces: a legacy
interface that is described in the next subsection, and the modernized version discussed here.
The reports are generated by the report() function, which combines the data generated during the workflow.
This function outputs an HTML file (other formats may follow in future versions), which can be opened with
a regular web browser to interactively explore and visualize the data. The report combines chromatograms,
mass spectra, tables with feature and annotation properties and many other useful ways to easily explore
your data.
Which data is reported is controlled by the following function arguments:

Argument Description
fGroups The featureGroups object that should be reported (mandatory).
MSPeakLists The MS peak lists object used for annotations (mandatory if

formulas/compounds are specified).
formulas, compounds The formulas and compounds objects that should be used to report feature

annotations.
compsCluster The result object from compound clustering.
components Any componentization results, e.g. with adduct annotations and from

transformation product screening.
TPs Output from object from generated transformation products.

Most of these arguments are optional, and if not specified this part of the workflow is simply not reported.
This also means that reporting can be performed at every stage during the workflow, which, for instance,
can be useful to quickly inspect results when testing out various settings to generate workflow data. More
advanced arguments to report() are discussed in the reference manual (?reporting).
Some examples:
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report(fGroups) # only report feature groups
report(fGroups[, 1:50]) # same, but only first 50, e.g. to do a quick inspection

# include feature annotations
report(fGroups, MSPeakLists = mslists, formulas = formulas, compounds = compounds)

# TP screening
report(fGroups, MSPeakLists = mslists, formulas = formulas, compounds = compounds,

components = componentsTP, TPs = TPs)

The report itself is primarily configured through a report settings file, which is an easily editable YAML file.
The default file is as follows:

general:
version: 2
format: html
path: report
keepUnusedPlots: 7
selfContained: false
noDate: false

summary: [ chord, venn, upset ]
features:

retMin: true
chromatograms:

large: true
small: true
features: false
intMax: eic

intensityPlots: false
aggregateConcs: mean
aggregateTox: mean

MSPeakLists:
spectra: true

formulas:
include: true
normalizeScores: max
exclNormScores: [ ]
topMost: 25

compounds:
normalizeScores: max
exclNormScores: [ score, individualMoNAScore, annoTypeCount, annotHitCount, libMatch
]↪→

onlyUsedScorings: true
topMost: 25

TPs:
graphs: true
graphStructuresMax: 25

internalStandards:
graph: true

A detailed description for all the settings can be found in the reference manual (?reporting). The table
below summarizes the most interesting options:
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Parameter Description
general --> format The output format. Currently only "html".
general --> selfContained If set (true) then the output will be a self contained .html

file. Handy to share reports, but not recommended for large
amounts of data.

features --> chromatograms -->
features

If enabled (true) then the report includes chromatograms of
individual features. If set to all then also chromatograms
are generated for analyses in which a feature was not
detected. This is especially useful to inspect if features were
‘missed’ during feature detection or accidentally removed
after a filter step.

formulas/compounds --> topMost Specifies the maximum number of top-ranked candidates to
plot. Often it will take a considerable amount of time to
report all candidates, hence, by default this is limited.

When the newProject tool is used to create a new patRoon project a template settings file (report.yml) is
automatically created. Otherwise, this file can be generated with the genReportSettingsFile() function.
Simply running this function without any arguments is enough:

genReportSettingsFile()

5.9.1 Legacy interface

The legacy interface was the default reporting interface for patRoon versions older than 2.2. The interface
now mainly serves for backward compatibility reasons, but may still be useful since the new interface does
not (yet) support all the formats from the legacy interface. The following three reporting functions are
available:

• reportCSV(): exports workflow data to comma-separated value (csv) files
• reportPDF(): generates simple reports by plotting workflow data in portable document files (PDFs)
• reportHTML(): generates interactive and easily explorable reports

Like the report() function described above, the arguments to these functions control which data will be
reported. However, these functions do not use a report settings file, and all configuration happens through
function arguments. Some common arguments are listed below; for a complete listing see the reference
manual (?`reporting-legacy`).

Argument Functions Remarks
fGroups, formulas,
compounds, formulas,
components, compsCluster,
TPs

All Objects to plot. Only fGroups is mandatory.

MSPeakLists reportPDF(),
reportHTML()

The MSPeakLists object that was used to
generate annotation data. Only needs to be
specified if formulas or compounds are
reported.

path All Directory path where report files will be stored
("report" by default).

formulasTopMost,
compoundsTopMost

reportPDF(),
reportHTML()

Report no more than this amount of highest
ranked candidates.
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Argument Functions Remarks
selfContained reportHTML() Outputs to a single and self contained .html

file. Handy to share reports, but not
recommended for large amounts of data.

Some typical examples:

reportHTML(fGroups) # simple interactive report with feature data
# generate PDFs with feature and compound annotation data
reportPDF(fGroups, compounds = compounds, MSPeakLists = mslists)
reportCSV(fGroups, path = "myReport") # change destination path

# generate report with all workflow types and increase maximum number of
# compound candidates to top 10
reportHTML(fGroups, formulas = formulas, compounds = compounds,

components = components, MSPeakLists = mslists,
compsCluster = compsClust,
compoundsTopMost = 10)

6 Sets workflows

In LC-HRMS screening workflows it is typically desired to be able to detect a broad range of chemicals.
For this reason, the samples are often measured twice: with positive and negative ionization. Most data
processing steps are only suitable for data with the same polarity, for instance, due to the fact that the m/z
values in mass spectra are inherently different (e.g. [M+H]+ vs [M-H]-) and MS/MS fragmentation occurs
differently. As a result, the screening workflow has to be done twice, which generally requires more time and
complicates comparing and interpretation of the complete (positive and negative) dataset.

In patRoon version 2.0 the sets workflow is introduced. This allows you to perform a single non-target
screening workflow from different sets of analyses files. Most commonly, each set represents a polarity,
hence, there is a positive and negative set. However, more than two sets are supported, and other distinctions
between sets are also possible, for instance, samples that were measured with different MS/MS techniques.
Another important advantage of the sets workflow is that MS/MS data from different sets can be combined
to provide more comprehensive annotations of features. The most important limitation is that (currently)
the chromatographic method that was used when analyzing the samples from each set needs to be equal,
since retention times are used to group features among the sets.

Performing a sets workflow usually only requires small modifications compared to a ‘regular’ patRoon work-
flow. This chapter outlines how to perform such workflows and how to use its unique functionality for data
processing. It is assumed that the reader is already familiar with performing ‘regular’ workflows, which were
discussed in the previous chapters.

6.1 Initiating a sets workflow

A sets workflow is not much different than a ‘regular’ (or non-sets) workflow. For instance, consider the
following workflow:

anaInfo <- patRoonData::exampleAnalysisInfo("positive")
fList <- findFeatures(anaInfo, "openms")
fGroups <- groupFeatures(fList, "openms")
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fGroups <- filter(fGroups, absMinIntensity = 10000, relMinReplicateAbundance = 1,
maxReplicateIntRSD = 0.75,↪→

blankThreshold = 5, removeBlanks = TRUE)

mslists <- generateMSPeakLists(fGroups, "mzr")
formulas <- generateFormulas(fGroups, mslists, "genform", adduct = "[M+H]+")
compounds <- generateCompounds(fGroups, mslists, "metfrag", adduct = "[M+H]+")

report(fGroups, MSPeakLists = mslists, formulas = formulas, compounds = compounds)

This example uses the example data from patRoonData to obtain a feature group dataset, which is cleaned-up
afterwards. Then, feature groups are annotated and all the results are reported.

Converting this to a sets workflow:

anaInfoPos <- patRoonData::exampleAnalysisInfo("positive")
anaInfoNeg <- patRoonData::exampleAnalysisInfo("negative")
fListPos <- findFeatures(anaInfoPos, "openms")
fListNeg <- findFeatures(anaInfoNeg, "openms")
fList <- makeSet(fListPos, fListNeg, adducts = c("[M+H]+", "[M-H]-"))

fGroups <- groupFeatures(fList, "openms")
fGroups <- filter(fGroups, absMinIntensity = 10000, relMinReplicateAbundance = 1,

maxReplicateIntRSD = 0.75,↪→

blankThreshold = 5, removeBlanks = TRUE)

mslists <- generateMSPeakLists(fGroups, "mzr")
formulas <- generateFormulas(fGroups, mslists, "genform")
compounds <- generateCompounds(fGroups, mslists, "metfrag")

report(fGroups, MSPeakLists = mslists, formulas = formulas, compounds = compounds)

This workflow will do all the steps for positive and negative data.
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Only a few modifications were necessary:

• The analysis information is obtained for positive and negative data (i.e. per set)
• Features are found for each set separately.
• makeSet is used to combine the feature data
• There is no need to specify the adduct anymore in the annotation steps.

NOTE The analysis names for the analysis information must be unique for each row, even
among sets. Furthermore, replicate groups should not contain analyses from different sets.

The key principle to make sets workflows work is performed by makeSet. This method function takes different
features objects (or featureGroups, discussed later) to combine the feature data across sets. During this
step features are neutralized: the feature m/z data is converted to neutral feature masses. This step ensures
that when features are grouped with groupFeatures, its algorithms are able to find the same feature among
different sets, even when different MS ionization modes were used during acquisition. However, please note
that (currently) no additional chromatographic alignment steps between sets are performed. For this reason,
the chromatographic methodology that is used to acquire the data must be the same for all sets.

The feature neutralization step relies on adduct data. In the example above, it is simply assumed that all fea-
tures measured with positive mode are protonated (M+H) species, and all negative features are deprotonated
(M-H). It is also possible to use adduct annotations for neutralization; this is discussed later.
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NOTE The newProject tool can be used to easily generate a sets workflow. Simply select “both”
for the Ionization option.

6.2 Generating sets workflow data

As was shown in the previous section, the generation of workflow data with a sets workflow largely follows
that as what was discussed in the previous chapters. The same generator functions are used:

Workflow step Function Output S4 class
Grouping features groupFeatures() featureGroupsSet
Suspect screening screenSuspects() featureGroupsScreeningSet
MS peak lists generateMSPeakLists() MSPeakListsSet
Formula annotation generateFormulas() formulasSet
Compound
annotation

generateCompounds() compoundsSet

Componentization generateComponents() algorithm dependent

(the data pre-treatment and feature finding steps have been omitted as they are not specific to sets workflows).

While the same function generics are used to generate data, the class of the output objects differ
(e.g. formulasSet instead of formulas). However, since all these classes inherit from their non-sets
workflow counterparts, using the workflow data in a sets workflow is nearly identical to what was discussed
in the previous chapters (further discussed in the next section).

As discussed before, an important step is the neutralization of features. Other workflow steps also have
internal mechanics to deal with data from different sets:

Workflow step Handling of set data
Finding/Grouping features Neutralization of m/z values
Suspect screening Merging results from screening performed for each set
Componentization Algorithm dependent (discussed below)
MS peak lists MS data is obtained and stored per set. The final peak lists are

combined (not averaged)
Formula/Compound annotation Annotation is performed for each set separately and used to generate

a final consensus

In most cases the algorithms of the workflow steps are first performed for each set, and this data is then
merged. To illustrate the importance of this, consider these examples

• A suspect screening with a suspect list that contains known MS/MS fragments
• Annotation where MS/MS fragments are used to predict the chemical formula
• Componentization in order to establish adduct assignments for the features

In all cases data is used that is highly dependent on the MS method (eg polarity) that was used to acquire the
sample data. Nevertheless, all the steps needed to obtain and combine set data are performed automatically
in the background, and are therefore largely invisible.

NOTE Because feature groups in sets workflows always have adduct annotations, it is never
required to specify the adduct or ionization mode when generating annotations, components or
do suspect screening (i.e. the adduct/ionization arguments should not be specified).
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6.2.1 Componentization

When the componentization algorithms related to adduct/isotope annotations (e.g. CAMERA, RAMClustR
and cliqueMS) and nontarget are used, then componentization occurs per set and the final object (a
componentsSet or componentsNTSet) contains all the components together. Since these algorithms are
highly dependent upon MS data polarity, no attempt is made to merge components from different sets.

The other componentization algorithms work on the complete data. For more details, see the reference
manual (?generateComponents).

6.2.2 Formula and compound annotation

For formula and compound annotation, the data generated for each set is combined to generate a set consen-
sus. The annotation tables are merged, scores are averaged and candidates are re-ranked. More details can
be found in the reference manual (e.g. ?generateCompounds). In addition, it possible to only keep candidates
that exist in a minimum number of sets. For this, the setThreshold and setThresholdAnn argument can
be used:

# candidate must be present in all sets
formulas <- generateFormulas(fGroups, mslists, "genform", setThreshold = 1)
# candidate must be present in all sets with annotation data
compounds <- generateCompounds(fGroups, mslists, "metfrag", setThresholdAnn = 1)

In the first example, a formula candidate for a feature group is only kept if it was found for all of the
sets. In the second example, a compound candidate is only kept if it was present in all of the sets with
annotation data available. The following examples of a common positive/negative sets workflow illustrate
the differences:

Candidate annotations candidate present setThreshold=1 setThresholdAnn=1

#1 +, - +, - Keep Keep
#2 +, - + Remove Remove
#3 + + Remove Keep

For more information refer to the reference manual (e.g. ?generateCompounds).

6.3 Selecting adducts to improve grouping

The selectIons() and adduct() functions discussed before can also improve sets workflows. This is because
the adduct annotations can be used to improve feature neutralization, which in turn will improve grouping
features between positive and negative ionization data. Once adduct annotations are set the features will be
re-neutralized and re-grouped.

A typical workflow with selectIons looks like this:
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# as before ...
anaInfoPos <- patRoonData::exampleAnalysisInfo("positive")
anaInfoNeg <- patRoonData::exampleAnalysisInfo("negative")
fListPos <- findFeatures(anaInfoPos, "openms")
fListNeg <- findFeatures(anaInfoNeg, "openms")

fGroupsPos <- groupFeatures(fListPos, "openms")
fGroupsNeg <- groupFeatures(fListNeg, "openms")
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fList <- makeSet(fListPos, fListNeg, adducts = c("[M+H]+", "[M-H]-"))

fGroups <- groupFeatures(fList, "openms")
fGroups <- filter(fGroups, absMinIntensity = 10000, relMinReplicateAbundance = 1,

maxReplicateIntRSD = 0.75,↪→

blankThreshold = 5, removeBlanks = TRUE)

components <- generateComponents(fGroups, "openms")
fGroups <- selectIons(fGroups, components, c("[M+H]+", "[M-H]-"))

# do rest of the workflow...

The first part of the workflow is exactly the same as was introduced in the beginning of this chapter.
Furthermore, note that for sets workflows, selectIons needs a preferential adduct for each set.

The adducts function can also be used to obtain and modify adduct annotations. For sets workflows, these
functions operate per set:

adducts(fGroups, set = "positive")[1:5]
adducts(fGroups, set = "positive")[4] <- "[M+K]+"

If you want to modify annotations for multiple sets, it is best to delay the re-gouping step:

adducts(fGroups, set = "positive", reGroup = FALSE)[4] <- "[M+K]+"
adducts(fGroups, set = "negative", reGroup = TRUE)[10] <- "[M-H2O]-"

Setting reGroup=FALSE will not perform any re-neutralization and re-grouping, which preserves feature group
names and safes processing time. However, it is crucial that the re-grouping step is eventually performed
at the end.

6.4 Processing data

All data objects that are generated during a sets workflow inherit from the classes from a ‘regular’ workflow.
This means that, with some minor exceptions, all of the data processing functionality discussed in the pre-
vious chapter (e.g. subsetting, inspection, filtering, plotting, reporting) is also applicable to a sets workflow.
For instance, the as.data.table() method can be used for general inspection:

as.data.table(compounds)[1:5, c("group", "score-positive", "score-negative",
"compoundName", "set")]↪→

#> group score-positive score-negative compoundName set
#> <char> <num> <num> <char> <char>
#> 1: M198_R317_273 3.290700 4.569478 3-(4-chlorophenyl)-1,1-dimethylurea positive,negative
#> 2: M198_R317_273 1.668025 2.025473 3-(3-chlorophenyl)-1,1-dimethylurea positive,negative
#> 3: M198_R317_273 1.594943 1.869558 4-amino-2-chloro-N,N-dimethylbenzamide positive,negative
#> 4: M198_R317_273 1.673759 1.557270 1-(4-chlorophenyl)-3-ethylurea positive,negative
#> 5: M198_R317_273 1.591203 1.865819 3-amino-4-chloro-N,N-dimethylbenzamide positive,negative

In addition, some the data processing functionality contains additional functionality for a sets workflow:
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# only keep feature groups that have positive data
fGroupsPos <- fGroups[, sets = "positive"]
# only keep feature groups that have feature data for all sets
fGroupsF <- filter(fGroups, relMinSets = 1)

# only keep feature groups with features present in both polarities
fGroupsPosNeg <- overlap(fGroups, which = c("positive", "negative"), sets = TRUE)
# only keep feature groups with features that are present only in positive mode
fGroupsOnlyPos <- unique(fGroups, which = "positive", sets = TRUE)

And plotting:

plotVenn(fGroups, sets = TRUE) # compare positive/negative features
plotSpectrum(compounds, index = 1, groupName = "M198_R317_273", MSPeakLists = mslists,

plotStruct = TRUE)
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The reference manual for the workflow objects contains specific notes applicable to sets workflows
(?featureGroups, ?compounds etc).

6.5 Advanced

6.5.1 Initiating a sets workflow from feature groups

The makeSet function can also be used to initiate a sets workflow from feature groups:

# as before ...
anaInfoPos <- patRoonData::exampleAnalysisInfo("positive")
anaInfoNeg <- patRoonData::exampleAnalysisInfo("negative")
fListPos <- findFeatures(anaInfoPos, "openms")
fListNeg <- findFeatures(anaInfoNeg, "openms")

fGroupsPos <- groupFeatures(fListPos, "openms")
fGroupsNeg <- groupFeatures(fListNeg, "openms")

fGroups <- makeSet(fGroupsPos, fGroupsNeg, groupAlgo = "openms",
adducts = c("[M+H]+", "[M-H]-"))

# do rest of the workflow...
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In this case makeSet takes the positive and negative features, neutralizes them and creates new feature
groups by grouping the original set specific groups (with the algorithm specified by groupAlgo).

While this option involves some extra steps, an advantage is that allows processing the feature data before
they are combined, e.g.:

fGroupsPos <- groupFeatures(fListPos, "openms")
fGroupsNeg <- groupFeatures(fListNeg, "openms")

# apply intensity theshold filters. Lower threshold for negative.
fGroupsPos <- filter(fGroupsPos, absMinIntensity = 1E4)
fGroupsNeg <- filter(fGroupsNeg, absMinIntensity = 1E3)

fGroups <- makeSet(fGroupsPos, fGroupsNeg, groupAlgo = "openms",
adducts = c("[M+H]+", "[M-H]-"))

Visually, this workflow looks like this:

Of course, any other processing steps on the feature groups data such as subsetting and visually checking
features are also possible before the sets workflow is initiated. Furthermore, it is also possible to perform
adduct annotations prior to grouping, which is an alternative way to improve neutralization to what was
discussed before.

80



6.5.2 Inspecting and converting set objects

The following generic functions may be used to inspect or convert data from sets workflows:

Generic Purpose Notes
sets Return the names of the sets in this

object.
setObjects Obtain the raw data objects that were

used to construct this object.
Not available for features and feature groups.

unset Converts this object to a regular workflow
object.

The set argument must be given to specify
which of the set data is to be converted.
This function will restore the original m/z
values of features.

These methods are heavily used internally, but rarely needed otherwise. More details can be found in the
reference manual.

7 Transformation product screening

This chapter describes the various functionality for screening of transformation products (TPs), which are
introduced since patRoon 2.0. Screening for TPs, i.e. chemicals that are formed from a parent chemical
by e.g. chemical or biological processes, has broad applications. For this reason, the TP screening related
functionality is designed to be flexible, thus allowing one to use a workflow that is best suited for a particular
study.

Regardless, the TP screening workflow in patRoon can be roughly summarized as follows:

• Parent screening During this step a common patRoon workflow is used to screen for the parent
chemicals of interest. This could be a full non-target analysis with compound annotation or a relative
simple suspect or target screening.

• Obtaining TPs Data is obtained of potential TPs for the parents of interest. The TPs may originate
from a library or predicted in-silico. Note that in some workflows this step is omitted (discussed later).

• TP screening A suspect screening is performed to find the TPs in the analysis data.
• Linking parents and TPs In the step the parent features are linked with the TP features. Several

post-processing functionality exists to improve and prioritize the data.

The next sections will outline more details on these steps are performed and configured. The last section in
this chapter outlines several example workflows.

NOTE The newProject tool can be used to easily generate a workflow with transformation
product screening.

81



7.1 Obtaining transformation product data

The generateTPs function is used to obtain TPs for a particular set of parents. Like other workflow generator
functions (findFeatures, generateCompounds), several algorithms are available that do the actual work.

Algorithm Usage Remarks
BioTransformer generateTPs(algorithm = "biotransformer",

...)
Predicts TPs with full structural
information

CTS generateTPs(algorithm = "cts", ...) Predicts TPs with full structural
information

Library generateTPs(algorithm = "library", ...) Obtains transformation products
from a library (PubChem
transformations or custom)

Formula library generateTPs(algorithm = "library_formula",
...)

Obtains transformation products
from a library (only formula data)

Metabolic logic generateTPs(algorithm = "logic", ...) Uses pre-defined logic to predict
TPs based on common elemental
differences (e.g. hydroxylation,
demethylation). Based on
Schollee et al. (2015).

The output of these algorithms can be distinguished in three categories:

1. Structural TPs (biotransformer, cts and library) come with full structural information for the
TPs (e.g. formula, SMILES, predicted Log P). As such, the corresponding algorithms also require the
full chemical structure of the parent compound.

2. Formula TPs (library_formula) are similar to structural TPs, but only involve formula and no
other structural information.

3. Calculated TPs (logic) are based solely on m/z differences and only require the feature masses.

Algorithms that fall into the first category are typically used when parents are known in advance, for instance,
from a target or suspect screening. This is also true for the second category, however, here only formula
data is used, which is useful when the complete structure of parents and/or TPs are not known. Calculated
TPs allow TP prediction for all features, even when nothing is known about their structure. This is most
suitable for full non-target analysis, however, extra care must be taken to rule out false positives. Finally,
the logic used to calculate TPs can also be used to automatically to generate a library suitable for the
library_formula algorithm, which allows a hybrid approach of the second and third categories.

An overview of common arguments for TP generation is listed below.

Argument Algorithm(s) Remarks
parents biotransformer,

cts, library
The input parents. See section below.

fGroups logic The input feature groups to calculate TPs for.
type biotransformer The prediction type: "env", "ecbased", "cyp450",

"phaseII", "hgut", "superbio", "allHuman". See
BioTransformer for more details.
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Argument Algorithm(s) Remarks
transLibrary cts The transformation library that should be used:

"hydrolysis", "abiotic_reduction",
"photolysis_unranked", "photolysis_ranked",
"mammalian_metabolism",
"combined_abioticreduction_hydrolysis",
"combined_photolysis_abiotic_hydrolysis". See
cts for more details.

TPLibrary/transformations library/logic Custom TP library/transformation rules.
generation biotransformer,

cts, library
The amount of transformation generations to predict.

adduct logic The assumed adduct of the parents (e.g. "[M+H]+").
Not needed when adduct annotations are available.

calcSims biotransformer,
cts, library

If TRUE then structural similarities between the parent
and TPs is calculated, which can be useful for
post-processing (discussed later).

7.1.1 Parent input

The input parent structures to generate structural/formula TPs (biotransformer, cts, library and
library_formula algorithms) must be specified as one of the following:

• A suspect list (follows the same format as suspect screening)
• A feature groups object with screening results (e.g. obtained with screenSuspects, see suspect screen-

ing)
• A compounds object obtained with compound annotation (not supported for library_formula)

In the former two cases the parent information is taken from the suspect list or from the hits in a suspect
screening worklow, respectively. The last case is more suitable for when the parents are not completely
known. In this case, the candidate structures from a compound annotation are used as input to obtain
TPs. Since all the candidates are used, it is highly recommend to filter the object in advance, for instance,
with the topMost filter. For library and library_formula, the parent input is optional: if no parents are
specified then TP data for all parents in the database is used.

For the logic algorithm TPs are predicted directly for feature groups. Since this algorithm can only perform
very basic validity checks, it is strongly recommended to first prioritize the feature group data.

Some typical examples:

# predict environmental TPs with BioTransformer for all parents in a suspect list
TPsBT <- generateTPs("biotransformer", parents = patRoonData::suspectsPos,

type = "env")
# obtain all TPs from the default library
TPsLib <- generateTPs("library")
# get TPs for the parents from a suspect screening
TPsLib <- generateTPs("library", parents = fGroupsScr)
# calculate TPs for all feature groups
TPsLogic <- generateTPs("logic", fGroups, adduct = "[M+H]+")

7.1.2 Processing data

Similar to other workflow data, several generic functions are available to inspect the data:
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Generic Remarks
length() Returns the total number of transformation products
names() Returns the names of the parents
parents() Returns a table with information about the parents
products() Returns a list with for each parent a table with TPs
as.data.table(),
as.data.frame

Convert all the object information into a data.table/data.frame

"[[" / "$" operators Extract TP information for a specified parent

Some examples:

# just show a few columns in this example, there are many more!
# note: the double dot syntax (..cols) is necessary since the data is stored as

data.tables↪→

cols <- c("name", "formula", "InChIKey")
parents(TPs)[1:5, ..cols]

#> name formula InChIKey
#> <char> <char> <char>
#> 1: DEET C12H17NO MMOXZBCLCQITDF-UHFFFAOYSA-N
#> 2: Irgarol C11H19N5S HDHLIWCXDDZUFH-UHFFFAOYSA-N
#> 3: Prometryne C10H19N5S AAEVYOVXGOFMJO-UHFFFAOYSA-N
#> 4: Trimethoprim C14H18N4O3 IEDVJHCEMCRBQM-UHFFFAOYSA-N
#> 5: 1H-benzotriazole C6H5N3 QRUDEWIWKLJBPS-UHFFFAOYSA-N

TPs[["DEET"]][, ..cols]

#> name formula InChIKey
#> <char> <char> <char>
#> 1: DEET-TP1 C12H17NO2 FRZJZRVZZNTMAW-UHFFFAOYSA-N
#> 2: DEET-TP2 C12H17NO2 KVTUZBGZTRABBQ-UHFFFAOYSA-N
#> 3: DEET-TP3 C2H4O IKHGUXGNUITLKF-UHFFFAOYSA-N
#> 4: DEET-TP4 C10H13NO FPINATACRXASTP-UHFFFAOYSA-N
#> 5: DEET-TP4 C10H13NO FPINATACRXASTP-UHFFFAOYSA-N
#> 6: DEET-TP5 C4H11N HPNMFZURTQLUMO-UHFFFAOYSA-N
#> 7: DEET-TP6 C8H7O2 GPSDUZXPYCFOSQ-UHFFFAOYSA-M
#> 8: DEET-TP7 C8H9NO WGRPQCFFBRDZFV-UHFFFAOYSA-N
#> 9: DEET-TP1 C12H17NO2 FRZJZRVZZNTMAW-UHFFFAOYSA-N

TPs[[2]][, ..cols]

#> name formula InChIKey
#> <char> <char> <char>
#> 1: Irgarol-TP1 C8H15N5S MWWBDLRPMWTLRX-UHFFFAOYSA-N
#> 2: Irgarol-TP2 C11H19N5OS HFCMSBLJLJOGGL-UHFFFAOYSA-N

as.data.table(TPs)[1:5, 1:3]

84



#> parent transformation name_lib
#> <char> <char> <char>
#> 1: DEET Aliphatic hydroxylation of methyl carbon adjacent to aromatic ring / Human Phase I N,N-diethyl-m-hydroxymethylbenzamide
#> 2: DEET Hydroxylation of terminal methyl / Human Phase I N-Ethyl-N-(2-hydroxyethyl)-3-methylbenzamide
#> 3: DEET N-dealkylation of tertiary carboxamide / Human Phase I acetaldehyde
#> 4: DEET N-dealkylation of tertiary carboxamide / Human Phase I N-ethyl-m-toluamide
#> 5: DEET Metabolism Benzamide, N-ethyl-3-methyl-

In addition, the following generic functions are available to modify or convert the object data:

Generic Classes Remarks
"[" operator All Subset this object on given parents
filter All Filters this object
convertToSuspects All Generates a suspect list of all TPs (and optionally

parents) that is suitable for screenSuspects

TPs2 <- TPs[1:10] # only keep results for first ten parents

# only keep TPs with likely/probably likelihood (specific property for CTS algorithm)
TPsF <- filter(TPs, properties = list(likelihood = c("LIKELY", "PROBABLE")))

# do a suspect screening for all TPs and their parents
suspects <- convertToSuspects(TPs, includeParents = TRUE)
fGroupsScr <- screenSuspects(fGroups, suspects, onlyHits = TRUE)

The convertToSuspects function is always part of a workflow, and is discussed further in the next section.

7.1.2.1 Structural TPs specifics For structural TPs several additional generic functions are available:

Generic Remarks
filter Filters this object (additional functionality for structural TPs)
convertToMFDB Generates a MetFrag database for all TPs (and optionally parents)
plotGraph Generates an interactive plot to explore transformation hierarchies
plotVenn, plotUpSet Compare results between different algorithms with Venn/UpSet diagrams

The convertToMFDB function is especially handy with predicted TPs, as it allows generating a compound
database for TPs that may not be available in commonly used databases. This is further demonstrated in
the first example.

# remove transformation products that are isomers to their parent or sibling TPs
# may simplify data as these are often difficult to identify
TPsF <- filter(TPs, removeParentIsomers = TRUE, removeTPIsomers = TRUE)

# remove duplicate transformation products from each parent
# these can occur if different pathways yield the same TPs
TPsF <- filter(TPs, removeDuplicates = TRUE)

# only keep TPs that have a structural similarity to their parent of >= 0.5
# (needs calcSims=TRUE when executing generateTPs())
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TPsF <- filter(TPs, minSimilarity = 0.5)

# use the TP data for a specialized MetFrag database
convertToMFDB(TPs, "TP-database.csv", includeParents = FALSE)
compoundsTPs <- generateCompounds(fGroups, mslists, "metfrag", database = "csv",

extraOpts = list(LocalDatabasePath =
"TP-database.csv"))↪→

plotVenn(TPsLib, TPsBT, labels = c("lib", "BT"))

1076158 76

BT

lib

plotGraph(TPsBT, which = "Triazophos") # hierarchy for Triazophos parent

Select	duplicate	TPs

Finally, results from different algorithms can be combined with the consensus generic function. This is
further discussed in algorithm consensus.

7.1.3 (Custom) Libraries and transformations

By default the library and logic algorithms use data that is installed with patRoon (based on PubChem
transformations and Schollee et al. (2015), respectively). However, it is also possible to use custom data. For
the library_formula no default library is provided, however, these can easily be generated as is discussed
at the end of the section.
To use a custom TP structure library a simple data.frame is needed with the names, SMILES and optionally
log P values for the parents and TPs. The log P values are used for prediction of the retention time direction
of a TP compared to its parent, as is discussed further in the next section. The following small library has
two TPs for benzotriazole and one for DEET:

myTPLib <- data.frame(parent_name = c("1H-Benzotriazole", "1H-Benzotriazole", "DEET"),
parent_SMILES = c("C1=CC2=NNN=C2C=C1", "C1=CC2=NNN=C2C=C1",

"CCN(CC)C(=O)C1=CC=CC(=C1)C"),↪→

86

https://doi.org/10.5281/zenodo.5644560
https://doi.org/10.5281/zenodo.5644560


TP_name = c("1-Methylbenzotriazole", "1-Hydroxybenzotriazole",
"N-ethyl-m-toluamide"),↪→

TP_SMILES = c("CN1C2=CC=CC=C2N=N1", "C1=CC=C2C(=C1)N=NN2O",
"CCNC(=O)C1=CC=CC(=C1)C"))↪→

myTPLib

#> parent_name parent_SMILES TP_name TP_SMILES
#> 1 1H-Benzotriazole C1=CC2=NNN=C2C=C1 1-Methylbenzotriazole CN1C2=CC=CC=C2N=N1
#> 2 1H-Benzotriazole C1=CC2=NNN=C2C=C1 1-Hydroxybenzotriazole C1=CC=C2C(=C1)N=NN2O
#> 3 DEET CCN(CC)C(=O)C1=CC=CC(=C1)C N-ethyl-m-toluamide CCNC(=O)C1=CC=CC(=C1)C

To use this library, simply pass it to the TPLibrary argument:

TPs <- generateTPs("library", TPLibrary = myTPLib)

For library_formula the library follows the same format. However, here the formula should be specified
instead of the SMILES with the parent_formula and TP_formula columns (although it is still allowed to
only specify SMILES, as in this case the formulae are automatically calculated).
For the logic algorithm a table with custom transformation rules can be specified for TP calculations:

myTrans <- data.frame(transformation = c("hydroxylation", "demethylation"),
add = c("O", ""),
sub = c("", "CH2"),
retDir = c(-1, -1))

myTrans

#> transformation add sub retDir
#> 1 hydroxylation O -1
#> 2 demethylation CH2 -1

The add and sub columns are used to denote the elements that are added or subtracted by the reaction.
These are used to calculate mass differences between parents and TPs. The retDir column is used to
indicate the retention time direction of the parent compared to the TP: -1 (elutes before parent), 1 (elutes
after parent) or 0 (similar or unknown). The next section describes how this data can be used to filter TPs.
The custom rules can be used by passing them to the transformations argument:

TPs <- generateTPs("logic", fGroups, adduct = "[M+H]+", transformations = myTrans)

The genFormulaTPLibrary() utility function can be used to automatically generate TP libraries suitable
for the library_formula algorithm. The transformation rules to calculate TPs are specified in the same
format as used by the logic algorithm.

myTPFormLib <- genFormulaTPLibrary(parents = patRoonData::suspectsPos, transformations =
myTrans)↪→

# also calculate second generation TPs (TPs of TPs)
myTPFormLib2 <- genFormulaTPLibrary(parents = patRoonData::suspectsPos, transformations =

myTrans,↪→

generations = 2)

# Use library
TPs <- generateTPs("library_formula", TPLibrary = myTPFormLib)
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Compared to the logic algorithm, the library_formula algorithm is more (and only) suitable for sus-
pect/target screening workflows, allows multiple transformation generations and allows better customization
through manually adding/removing TPs from the library prior to passing it to generateTPs().

7.2 Linking parent and transformation product features

This section discusses one of the most important steps in a TP screening workflow, which is to link feature
groups of parents with those of candidate transformation products. During this step, components are made,
where each component consist of one or more feature groups of detected TPs for a particular parent. Note
that componentization was already introduced before, but for very different algorithms. However, the data
format for TP componentization is highly similar. After componentization, several filters are available to
clean and prioritize the data. These can even allow workflows without obtaining potential TPs in advance,
which is discussed in the last subsection.

7.2.1 Componentization

Like other algorithms, the generateComponents generic function is used to generate TP components, by
setting the algorithm parameter to "tp".
The following arguments are of importance:

Argument Remarks
fGroups The input feature groups for the parents
fGroupsTPs The input feature groups for the TPs
ignoreParents Set to TRUE to ignore feature groups in fGroupsTPs that also occur in fGroups
TPs The input transformation products, ie as generated by generateTPs()
MSPeakLists,
formulas,
compounds

Annotation objects used for similarity calculation between the parent and its TPs

minRTDiff The minimum retention time difference (seconds) of a TP for it to be considered to
elute differently than its parent.

7.2.1.1 Feature group input The fGroups, fGroupsTPs and ignoreParents arguments are used by
the componentization algorithm to identify which feature groups can be considered as parents and which as
TPs. Three scenarios are possible:

1. fGroups=fGroupsTPs and ignoreParents=FALSE: in this case no distinction is made, and all feature
groups are considered a parent or TP (default if fGroupsTPs is not specified).

2. fGroups and fGroupsTPs contain different subsets of the same featureGroups object and
ignoreParents=FALSE: only the feature groups in fGroups/fGroupsTPs are considered as par-
ents/TPs.

3. As above, but with ignoreParents=TRUE: the same distinction is made as above, but any feature
groups in fGroupsTPs are ignored if also present in fGroups.

The first scenario is often used if it is unknown which feature groups may be parents or which are TPs.
Furthermore, this scenario may also be used if the dataset is sufficiently simple, for instance, because a
suspect screening with the results from convertToSuspects (discussed in the previous section) would reliably
discriminate between parents and TPs. A workflow with the first scenario is demonstrated in the second
example.
In all other cases it is recommended to use either the second or third scenario, since making a prior distinction
between parent and TP feature groups greatly simplifies the dataset and reduces false positives. A relative
simple example where this can be used is when there are two sample groups: before and after treatment.
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componTP <- generateComponents(algorithm = "tp",
fGroups = fGroups[rGroups = "before"],
fGroupsTPs = fGroups[rGroups = "after"])

In this example, only those feature groups present in the “before” replicate group are considered as parents,
and those in “after” may be considered as a TP. Since it is likely that there will be some overlap in feature
groups between both sample groups, the ignoreParents flag can be used to not consider any of the overlap
for TP assignments:

componTP <- generateComponents(algorithm = "tp",
fGroups = fGroups[rGroups = "before"],
fGroupsTPs = fGroups[rGroups = "after"],
ignoreParents = TRUE)

More sophisticates ways are of course possible to provide an upfront distinction between parent/TP feature
groups. In the fourth example a workflow is demonstrated where fold changes are used.

NOTE The feature groups specified for fGroups/fGroupsTPs must always originate from the
same featureGroups object.

For the library and biotransformer algorithms it is mandatory that a suspect screening of parents and
TPs is performed prior to componentization. This is necessary for the componentization algorithm to map
the feature groups that belong to a particular parent or TP. To do so, the convertToSuspects function is
used to prepare the suspect list:

# set includeParents to TRUE since both the parents and TPs are needed
suspects <- convertToSuspects(TPs, includeParents = TRUE)
fGroupsScr <- screenSuspects(fGroups, suspects, onlyHits = TRUE)

# do the componentization
# a similar distinction between fGroups/fGroupsScr as discussed above can of course also

be done↪→

componTP <- generateComponents(fGroups = fGroupsScr, ...)

If a parent screening was already performed in advance, for instance when the input parents to generateTPs
are screening results, the screening results for parents and TPs can also be combined. The second example
demonstrates this.
Note that in the case a parent suspect is matched to multiple feature groups, a component is made for each
match. Similarly, if multiple feature groups match to a TP suspect, all of them will be incorporated in the
component.
When TPs were generated with the logic algorithm a suspect screening must also be carried out in advance.
However, in this case it is not necessary to include the parents (since each parent equals a feature group
no mapping is necessary). The onlyHits variable to screenSuspects must not be set in order to keep the
parents.

# only screen for TPs
suspects <- convertToSuspects(TPs, includeParents = FALSE)
# but keep all other feature groups as these may be parents
fGroupsScr <- screenSuspects(fGroups, suspects, onlyHits = FALSE)

# do the componentization...
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7.2.1.2 Annotation similarity calculation If additional annotation data for parents and TPs is given
to the componentization algorithm, it will be used to calculate various similarity properties. Often, the
chemical structure for a transformation product is similar to that of its parent. Hence, there is a good
chance that a parent and its TPs also share similar MS/MS data.

Firstly, if MS peak lists are provided, then the spectrum similarity is calculated between each parent and its
potential TP candidates. This is performed with all the three different alignment shifts (see the spectrum
similarity section for more details).

In case formulas and/or compounds objects are specified, then a parent/TP comparison is made by counting
the number of fragments and neutral losses that they share (by using the formula annotations). This property
is mainly used for non-target workflows where the identity for a parent and TP is not yet well established.
For this reason, fragments and neutral losses reported for all candidates for the parent/TP feature group
are considered. Hence, it is highly recommend to pre-treat the annotation objects, for instance, with the
topMost filter. If both formulas and compounds are given the results are pooled. Note that each unique
fragment/neutral loss is only counted once, thus multiple formula/compound candidates with the same
annotations will not skew the results.

7.2.2 Processing data

The output of TP componentization is an object of the componentsTPs class. This derives from the ‘regular’
components class, therefore, all the data processing functionality described before (extraction, subsetting,
filtering etc) are also valid for TP components.

Several additional filters are available to prioritize the data:

Filter Remarks
retDirMatch If TRUE only keep TPs with an expected chromatographic retention

direction compared to the parent.
minSpecSim, minSpecPrec,
minSpecSimBoth

The minimum spectrum similarity between the parent and TP. Calculated
with no, "precursor" and "both" alignment shifting (see spectrum
similarity).

minFragMatches,
minNLMatches

Minimum number of formula fragment/neutral loss matches between parent
and TP (discussed in previous section).

formulas A formulas object used to further verify candidate TPs that were
generated by the logic algorithm.

The retDirMatch filter compares the expected and observed retention time direction of a TP in order to
decide if it should be kept. The direction is a value of either -1 (TP elutes before parent), +1 (TP elutes
after parent) or 0 (TP elutes very close to the parent or its direction is unknown). The directions are taken
from the generated transformation products. For the library and biotransformer algorithms the log P
values are compared of a TP and its parent. Here, it is assumed that lower log P values result in earlier
elution (i.e. typical with reversed phase LC). For the logic algorithm the retention time direction is taken
from the transformation rules table. Note that specifying a large enough value for the minRTDiff argument
to generateComponents is important to ensure that some tolerance exists while comparing retention time
directions of parent and TPs. This filter does nothing if either the observed or expected direction is zero.

When TPs data was generated with the logic algorithm it is recommended to use the formulas filter.
This filter uses formula annotations to verify that (1) a parent feature group contains the elements that are
subtracted during the transformation and (2) the TP feature group contains the elements that were added
during the transformation. Since the ‘right’ candidate formula is most likely not yet known, this filter looks
at all candidates. Therefore, it is recommended to filter the formulas object, for instance, with the topMost
filter.
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Finally, the plotGraph() method function that was introduced exploring transformation hierarchies for
structure TPs, can also incorporate componentization results to simplify the plot and mark TP hits:

plotGraph(TPsBT, which = "Atrazine", components = componTP)

Select	duplicate	TPs

7.2.3 Omitting transformation product input

The TPs argument to generateComponents can also be omitted. In this case every feature group of
fGroupTPs is considered to be a potential TP for the potential parents specified for fGroups. An ad-
vantage is that the screening workflow is not limited to any known TPs or transformations. However, such
a workflow has high demands on prioritiation steps before and after the componentization to rule out the
many false positives that may occur.

When no transformation data is supplied it is crucial to make a prior distinction between parent and TP
feature groups. Afterwards, the MS/MS spectral and other annotation similarity filters mentioned in the
previous section may be a powerful way to further prioritize data.

The fourth example demonstrates such a workflow.

7.2.4 Reporting TP components

The TP components can be reported with the report function. This is done by setting the components
function argument (i.e. equally to all other component types). The results will be displayed with a customized
format that allows easy exploring of each parent with its TPs. In addition, the TPs argument can be set to
include additional data such as transformation pathways.

report(fGroups, components = componTP, TPs = TPs)

7.3 Example workflows

The next subsections demonstrate several approaches to perform a TP screening workflow with patRoon.
In all examples it is assumed that feature groups were already obtained (with the findFeatures and
groupFeatures functions) and stored in the fGroups variable.

The workflows with patRoon are designed to be flexible, and the examples here are primarily meant to
implement your own workflow. Furthermore, some of the techniques used in the examples can also be
combined. For instance, the Fold change classification and MS/MS similarity filters applied in the fourth
example could also be applied to any of the other examples.
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7.3.1 Screen predicted TPs for targets

The first example is a simple workflow where TPs are predicted for a set of given parents with BioTransformer
and subsequently screened. A MetFrag compound database is generated and used for annotation.

# predict TPs for a fixed list of parents
TPs <- generateTPs("biotransformer", parents = patRoonData::suspectsPos)

# screen for the TPs
suspectsTPs <- convertToSuspects(TPs, includeParents = FALSE)
fGroupsTPs <- screenSuspects(fGroups, suspectsTPs, adduct = "[M+H]+", onlyHits = TRUE)

# perform annotation of TPs
mslistsTPs <- generateMSPeakLists(fGroupsTPs, "mzr")
convertToMFDB(TPs, "TP-database.csv", includeParents = FALSE) # generate MetFrag database
compoundsTPs <- generateCompounds(fGroupsTPs, mslistsTPs, "metfrag", adduct = "[M+H]+",

database = "csv",↪→

extraOpts = list(LocalDatabasePath =
"TP-database.csv"))↪→

7.3.2 Screening TPs from a library for suspects

In this example TPs of interest are obtained for the parents that surfaced from of a suspect screening. The
steps of this workflow are:

1. Suspect screening parents.
2. Obtain TPs for the suspect hits from a library.
3. A second suspect screening is performed for TPs and the original parent screening results are amended.

Note that the parent data is needed for componentization.
4. Both parents and TPs are annotated using a database generated from their chemical structures.
5. Some prioritization is performed by

a. Only keeping candidate structures for which in-silico fragmentation resulted in at least one an-
notated MS/MS peak.

b. Only keeping suspect hits with an estimated identification level of 3 or better.
6. The TP components are made and only feature groups with parent/TP assignments are kept.
7. All results are reported.

# step 1
fGroupsScr <- screenSuspects(fGroups, patRoonData::suspectsPos, adduct = "[M+H]+")
# step 2
TPs <- generateTPs("library", parents = fGroupsScr)

# step 3
suspects <- convertToSuspects(TPs)
fGroupsScr <- screenSuspects(fGroupsScr, suspects, adduct = "[M+H]+", onlyHits = TRUE,

amend = TRUE)↪→

# step 4
mslistsScr <- generateMSPeakLists(fGroupsScr, "mzr")
convertToMFDB(TPs, "TP-database.csv", includeParents = TRUE)
compoundsScr <- generateCompounds(fGroupsScr, mslistsScr, "metfrag", adduct = "[M+H]+",

database = "csv",↪→
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extraOpts = list(LocalDatabasePath =
"TP-database.csv"))↪→

# step 5a
compoundsScr <- filter(compoundsScr, minExplainedPeaks = 1)

# step 5b
fGroupsScrAnn <- annotateSuspects(fGroupsScr, MSPeakLists = mslistsScr,

compounds = compoundsScr)
fGroupsScrAnn <- filter(fGroupsScrAnn, maxLevel = 3, onlyHits = TRUE)

# step 6
componTP <- generateComponents(fGroupsScrAnn, "tp", TPs = TPs, MSPeakLists = mslistsScr,

compounds = compoundsScr)
fGroupsScrAnn <- fGroupsScrAnn[results = componTP]

# step 7
report(fGroupsScrAnn, MSPeakLists = mslistsScr, compounds = compoundsScr,

components = componTP, TPs = TPs)

7.3.3 Non-target screening of predicted TPs

This example uses metabolic logic to calculate possible TPs for all feature groups from a complete non-target
screening. This example demonstrates how a workflow can be performed when little is known about the
identity of the parents. The steps of this workflow are:

1. Formula annotations are performed for all feature groups.
2. These results are then limited to the top 5 candidates, and only feature groups with annotations are

kept.
3. The TPs are calculated for all remaining feature groups.
4. A suspect screening is performed to find the TPs. Unlike the previous example feature groups without

hits are kept (discussed here).
5. The components are generated
6. The components are filtered:

a. The TPs must follow an expected retention time direction
b. The parent/TPs should have at least one candidate formula that fits with the transformation.

7. Only feature groups are kept with parent/TP assignments and all results are reported.

# steps 1-2
mslists <- generateMSPeakLists(fGroups, "mzr")
formulas <- generateFormulas(fGroups, mslists, "genform", adduct = "[M+H]+")
formulas <- filter(formulas, topMost = 5)
fGroups <- fGroups[results = formulas]

# step 3
TPs <- generateTPs("logic", fGroups = fGroups, adduct = "[M+H]+")

# step 4
suspects <- convertToSuspects(TPs)
fGroupsScr <- screenSuspects(fGroups, suspects, adduct = "[M+H]+", onlyHits = FALSE)
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# step 5
componTP <- generateComponents(fGroupsScr, "tp", TPs = TPs, MSPeakLists = mslists,

formulas = formulas)↪→

# step 6
componTP <- filter(componTP, retDirMatch = TRUE, formulas = formulas)

# step 7
fGroupsScr <- fGroupsScr[results = componTP]
report(fGroupsScr, MSPeakLists = mslists, formulas = formulas, components = componTP)

7.3.4 Non-target screening of TPs by annotation similarities

This example shows a workflow where no TP data from a prediction or library is used. Instead, this
workflow relies on statistics and MS/MS data to find feature groups which may potentially have a parent -
TP relationship. The workflow is similar to that of the previous example. The steps of this workflow are:

1. Fold changes (FC) between two sample groups are calculated to classify which feature groups are
decreasing (i.e. parents) or increasing (i.e. TPs).

2. Feature groups without classification are removed.
3. Formula annotations are performed like the previous example.
4. The componentization is performed and the FC classifications are used to specify which feature groups

are to be considered parents or TPs.
5. Only TPs are kept that show a high MS/MS spectral similarity and share at least one fragment with

their parent.
6. Only feature groups are kept with parent/TP assignments and all results are reported.

# step 1
tab <- as.data.table(fGroups, FCParams = getFCParams(c("before", "after")))
groupsParents <- tab[classification == "decrease"]$group
groupsTPs <- tab[classification == "increase"]$group

# step 2
fGroups <- fGroups[, union(groupsParents, groupsTPs)]

# step 3
mslists <- generateMSPeakLists(fGroups, "mzr")
formulas <- generateFormulas(fGroups, mslists, "genform", adduct = "[M+H]+")
formulas <- filter(formulas, topMost = 5)
fGroups <- fGroups[results = formulas]

# step 4
componTP <- generateComponents(algorithm = "tp",

fGroups = fGroups[, groupsParents],
fGroupsTPs = fGroups[, groupsTPs],
MSPeakLists = mslists, formulas = formulas)

# step 5
componTP <- filter(componTP, minSpecSimBoth = 0.75, minFragMatches = 1)

# step 6
fGroups <- fGroups[results = componTP]
report(fGroups, MSPeakLists = mslists, formulas = formulas, components = componTP)
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8 Advanced usage

8.1 Adducts

When generating formulae and compound annotations and some other functionalities it is required to specify
the adduct species. Behind the scenes, different algorithms typically use different formats. For instance, in
order to specify a protonated species. . .

• GenForm either accepts "M+H" and "+H"
• MetFrag either accepts the numeric code 1 or "[M+H]+"
• SIRIUS accepts "[M+H]+"

In addition, most algorithms only accept a limited set of possible adducts, which do not necessarily all
overlap with each other. The GenFormAdducts() and MetFragAdducts() functions list the possible adducts
for GenForm and MetFrag, respectively.
In order to simplify the situation patRoon internally uses its own format and converts it automatically to the
algorithm specific format when necessary. Furthermore, during conversion it checks if the specified adduct
format is actually allowed by the algorithm. Adducts in patRoon are stored in the adduct S4 class. Objects
from this class specify which elements are added and/or subtracted, the final charge and the number of
molecules present in the adduct (e.g. 2 for a dimer).

adduct(add = "H") # [M+H]+
adduct(sub = "H", charge = -1) # [M-H]-
adduct(add = "K", sub = "H2", charge = -1) # [M+K-H2]-
adduct(add = "H3", charge = 3) # [M+H3]3+
adduct(add = "H", molMult = 2) # [2M+H]+

A more easy way to generate adduct objects is by using the as.adduct() function:

as.adduct("[M+H]+")
as.adduct("[M+H2]2+")
as.adduct("[2M+H]+")
as.adduct("[M-H]-")
as.adduct("+H", format = "genform")
as.adduct(1, isPositive = TRUE, format = "metfrag")

In fact, the adduct argument to workflow functions such as generateFormulas() and generateCompounds()
is automatically converted to an adduct class with the as.adduct() function if necessary:

formulas <- generateFormulas(..., adduct = adduct(sub = "H", charge = -1))
formulas <- generateFormulas(..., adduct = "[M-H]-") # same as above

More details can be found in the reference manual (?adduct and ?`adduct-utils`).

8.2 Feature intensity normalization

Feature intensities are often compared between sample analyses, for instance, to evaluate trends between
sample points. However, matrix effects, varying detector sensitivity and differences in analysed sample
amount may complicate such comparison. For this reason, it may be desired to normalize the feature
intensities.
The normInts() function is used to normalize feature intensities (peak heights and areas). Two different
types are supported:
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1. Feature normalization: normalization occurs by intensities within the same sample analysis
2. Group normalization: normalization occurs by intensities among features within the same group

Both normalization types can be combined.

8.2.1 Feature normalization

Feature normalization itself supports the following normalization methods:

Method Usage Description
TIC normInts(featNorm = "tic",

...)
Normalizes by the combined intensity of all
features, also known as the Total Ion Current
(TIC).

Internal Standard normInts(featNorm = "istd",
...)

Uses internal standards (IS) to normalize feature
intensities.

Concentration normInts(featNorm = "conc",
...)

Normalizes feature intensities of a sample analysis
by its normalization concentration (explained
below).

None normInts(featNorm = "none",
...)

Performs no feature normalization. Set this if you
only want to perform group normalization
(discussed in the next section).

8.2.1.1 Normalization concetration All methods (except "none") are influenced by the normalization
concentration, which is a property set for each sample analysis. For IS normalization, this should equal
the concentration of the IS present in the sample. Otherwise the normalization concentration resembles the
injected sample amount. The normalization concentration is defined in the norm_conc column of the analysis
information. For example:

# obtain analysis information as usual, but add normalization concentrations.
# The blanks are set to NA, and will therefore not be normalized.
generateAnalysisInfo(paths = patRoonData::exampleDataPath(),

groups = c(rep("solvent", 3), rep("standard", 3)),
blanks = "solvent",
norm_concs = c(NA, NA, NA, 2, 2, 1))

#> path analysis group blank norm_conc
#> 1 /usr/local/lib/R/site-library/patRoonData/extdata/pos solvent-pos-1 solvent solvent NA
#> 2 /usr/local/lib/R/site-library/patRoonData/extdata/pos solvent-pos-2 solvent solvent NA
#> 3 /usr/local/lib/R/site-library/patRoonData/extdata/pos solvent-pos-3 solvent solvent NA
#> 4 /usr/local/lib/R/site-library/patRoonData/extdata/pos standard-pos-1 standard solvent 2
#> 5 /usr/local/lib/R/site-library/patRoonData/extdata/pos standard-pos-2 standard solvent 2
#> 6 /usr/local/lib/R/site-library/patRoonData/extdata/pos standard-pos-3 standard solvent 1

The normalization concentration does not need to be an absolute value. In the end, what matters are the
relative numbers between the sample analyses. For example, if the concentrations for two analyses are c(1,
2) or c(1.5, 3.0) the normalization occurs the same. Setting the concentration to NA (or 0) will skip
normalization for an analysis. If the normalization concentration is absent from the analysis information it
will be defaulted to 1.
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8.2.1.2 Internal standard normalization For IS normalization an internal standard list should be
specified with the properties of the internal standards. Essentially, the format of this list is exactly the same
as a suspect list. Example lists can be found in the patRoonData package:

patRoonData::ISTDListPos[1:5, ]

#> name formula rt
#> 1 1H-benzotriazole-D4 C6[2]H4HN3 268.1
#> 2 Atenolol-D7 C14[2]H7H15N2O3 213.5
#> 3 Atrazine-D5 C8[2]H5H9ClN5 336.5
#> 4 Bezafibrate-D6 C19[2]H6H14ClNO4 351.7
#> 5 Climbazole-D4 C15[2]H4H13ClN2O2 359.1

As can be seen from above, labelled isotopes can be specified with square brackets, e.g. [2]H for deuterium.

The next step is to perform the normalization with normInts():

fGroupsNorm <- normInts(fGroups, featNorm = "istd", standards = patRoonData::ISTDListPos,
adduct = "[M+H]+",↪→

ISTDRTWindow = 20, ISTDMZWindow = 200, minISTDs = 2)

This will do the following:

• Perform a suspect screening to find the specified IS (standards argument).
• Remove the IS candidates which are absent in one or more of the analyses to be normalized.
• Select IS candidates for each feature group, based on close retention time (ISTDRTWindow argument),

m/z (ISTDMZWindow argument) and a minimum number (minISTDs). If the number of IS candidates
within specified retention time and m/z windows is below minISTDs, the close(st) candidate(s) outside
these windows are additionally chosen.

• Normalization of features is performed with the combined IS intensities.

To evaluate the assignments for a particular feature group, the internalStandardAssignments() function
and plotGraph() functions can be used:

fg <- names(fGroupsNorm)[2]
internalStandardAssignments(fGroupsNorm)[[fg]] # IS assignments for 2nd feature group

#> [1] "M221_R336_292" "M284_R323_569" "M213_R340_263"

plotGraph(fGroupsNorm) # interactively explore assignments

Explore	connections	by	dragging/zooming/selecting.
Smaller	retention	time	difference	have	wider	edges.

Select	by	feat	group

Select	by	ISTD

8.2.1.3 Other methods Like IS normalization, other feature normalization methods also occurs with
normInts():
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fGroupsNorm <- normInts(fGroups, featNorm = "tic") # TIC normalization
fGroupsNorm <- normInts(fGroups, featNorm = "conc") # Concentration normalization

8.2.2 Group normalization

Normalizing feature intensities among group member is easily performed by setting groupNorm=TRUE:

# only perform group normalization
fGroupsNorm <- normInts(fGroups, featNorm = "none", groupNorm = TRUE)
# first perform TIC feature normalization and then group normalization
fGroupsNorm <- normInts(fGroups, featNorm = "tic", groupNorm = TRUE)

8.2.3 Using normalized intensities

The normalized intensity (peak heigh/area) values can easily be obtained with as.data.table():

as.data.table(fGroupsNorm, normalized = TRUE)[1:5]

#> group ret mz standard-pos-1 standard-pos-2 standard-pos-3 ISTD_assigned
#> <char> <num> <num> <num> <num> <num> <char>
#> 1: M109_R192_20 191.8717 109.0759 2.328459 2.1068991 0.9688233 M280_R212_561,M274_R214_532
#> 2: M111_R330_23 330.4078 111.0439 0.476554 0.4156571 0.2109971 M221_R336_292,M284_R323_569,M213_R340_263
#> 3: M114_R269_25 268.6906 114.0912 1.006808 1.1271519 0.5722654 M300_R262_608,M275_R294_537
#> 4: M116_R317_29 316.7334 116.0527 3.804086 3.8240928 2.1151499 M284_R323_569,M198_R310_215,M285_R301_570,M221_R336_292
#> 5: M120_R268_30 268.4078 120.0554 3.376374 3.0432604 1.4157580 M300_R262_608,M275_R294_537

# can be combined with other parameters
as.data.table(fGroupsNorm, normalized = TRUE, average = TRUE, areas = TRUE)[1:5]

#> group ret mz standard ISTD_assigned
#> <char> <num> <num> <num> <char>
#> 1: M109_R192_20 191.8717 109.0759 3.2597655 M280_R212_561,M274_R214_532
#> 2: M111_R330_23 330.4078 111.0439 0.2753524 M221_R336_292,M284_R323_569,M213_R340_263
#> 3: M114_R269_25 268.6906 114.0912 0.8325869 M300_R262_608,M275_R294_537
#> 4: M116_R317_29 316.7334 116.0527 2.6500817 M284_R323_569,M198_R310_215,M285_R301_570,M221_R336_292
#> 5: M120_R268_30 268.4078 120.0554 1.8965138 M300_R262_608,M275_R294_537

# feature values (no need to set normalized=TRUE)
as.data.table(fGroupsNorm, features = TRUE)[1:5, .(group, analysis, intensity_rel,

area_rel)]↪→

#> group analysis intensity_rel area_rel
#> <char> <char> <num> <num>
#> 1: M109_R192_20 standard-pos-1 2.3284588 3.9777827
#> 2: M109_R192_20 standard-pos-2 2.1068991 4.0198440
#> 3: M109_R192_20 standard-pos-3 0.9688233 1.7816697
#> 4: M111_R330_23 standard-pos-1 0.4765540 0.3352008
#> 5: M111_R330_23 standard-pos-2 0.4156571 0.3251259
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Several other patRoon functions also accept the normalized argument to use normalized data, such as
plotInt() (discussed here), plotVolcano() (discussed here) and generateComponents() with intensity
clustering (discussed here).

8.2.4 Default normalization

If normalized data is requested (normalized=TRUE, see previous section) and normInts() was not called on
the feature group data, a default normalization will occur. This is nothing more than a group normalization
(normInts(groupNorm=TRUE, ...)), and was mainly implemented to ensure backwards compatibility with
previous patRoon versions.

8.3 Feature parameter optimization

Many different parameters exist that may affect the output quality of feature finding and grouping. To avoid
time consuming manual experimentation, functionality is provided to largely automate the optimization
process. The methodology, which uses design of experiments (DoE), is based on the excellent Isotopologue
Parameter Optimization (IPO) R package. The functionality of this package is directly integrated in patRoon.
Some functionality was added or changed, the most important being support for other feature finding and
grouping algorithms besides XCMS and basic optimization support for qualitative parameters. Nevertheless,
the core optimization algorithms are largely untouched.

This section will introduce the most important concepts and functionality. Please see the reference manual
for more information (e.g. ?`feature-optimization`).

NOTE The SIRIUS and SAFD algorithms are currently not (yet) supported.

8.3.1 Parameter sets

Before starting an optimization experiment we have to define parameter sets. These sets contain the param-
eters and (initial) numeric ranges that should be tested. A parameter set is defined as a regular list, and
can be easily constructed with the generateFeatureOptPSet() and generateFGroupsOptPSet() functions
(for feature finding and feature grouping, respectively).

pSet <- generateFeatureOptPSet("openms") # default test set for OpenMS
pSet <- generateFeatureOptPSet("openms", chromSNR = c(5, 10)) # add parameter
# of course manually making a list is also possible (e.g. if you don't want to test the

default parameters)↪→

pSet <- list(noiseThrInt = c(1000, 5000))

When optimizing with XCMS or KPIC2 a few things have to be considered. First of all, when using the
XCMS3 interface (i.e. algorithm="xcms3") the underlying method that should be used for finding and
grouping features and retention alignment should be set. In case these are not set default methods will be
used.

pSet <- list(method = "centWave", ppm = c(2, 8))
pSet <- list(ppm = c(2, 8)) # same: centWave is default

# get defaults, but for different grouping/alignment methods
pSetFG <- generateFGroupsOptPSet("xcms3", groupMethod = "nearest", retAlignMethod =

"peakgroups")↪→
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In addition, when optimizing feature grouping (both XCMS interfaces and KPIC2) we need to set the
grouping and retention alignment parameters in two different nested lists: these are groupArgs/retcorArgs
(algorithm="xcms"), groupParams/retAlignParams (algorithm="xcms3") or groupArgs/alignArgs
(algorithm="kpic2").

pSetFG <- list(groupParams = list(bw = c(20, 30))) # xcms3
pSetFG <- list(retcorArgs = list(gapInit = c(0, 7))) # xcms
pSetFG <- list(groupArgs = list(mz_weight = c(0.3, 0.9))) # kpic2

When a parameter set has been defined it should be used as input for the optimizeFeatureFinding() or
optimizeFeatureGrouping() functions.

ftOpt <- optimizeFeatureFinding(anaInfo, "openms", pSet)
fgOpt <- optimizeFeatureGrouping(fList, "openms", pSetFG) # fList is an existing features

object↪→

Similar to findFeatures(), the first argument to optimizeFeatureFinding() should be the analysis infor-
mation. Note that it is not uncommon to perform the optimization with only a subset of (representative)
analyses (i.e. to reduce processing time).

ftOpt <- optimizeFeatureFinding(anaInfo[1:2, ], "openms", pSet) # only use first two
analyses↪→

From the parameter set a design of experiment will be automatically created. Obviously, the more parameters
are specified, the longer such an experiment will take. After an experiment has finished, the optimization
algorithm will start a new experiment where numeric ranges for each parameter are increased or decreased
in order to more accurately find optimum values. Hence, the numeric ranges specified in the parameter set
are only initial ranges, and will be changed in subsequent experiments. After each experiment iteration the
results will be evaluated and a new experiment will be started as long as better results were obtained during
the last experiment (although there is a hard limit defined by the maxIterations argument).
For some parameters it is recommended or even necessary to set hard limits on the numeric ranges that are
allowed to be tested. For instance, setting a minimum feature intensity threshold is highly recommended
to avoid excessive processing time and potentially suboptimal results due to excessive amounts of resulting
features. Configuring absolute parameter ranges is done by setting the paramRanges argument.

# set minimum intensity threshold (but no max)
ftOpt <- optimizeFeatureFinding(anaInfo, "openms",

list(noiseThrInt = c(1000, 5000)), # initial testing
range↪→

paramRanges = list(noiseThrInt = c(500, Inf))) # never
test below 500↪→

Depending on the used algorithm, several default absolute limits are imposed. These may be obtained with
the getDefFeaturesOptParamRanges() and getDefFGroupsOptParamRanges() functions.
The common operation is to optimize numeric parameters. However, parameters that are not numeric
(i.e. qualitative) need a different approach. In this case you will need to define multiple parameter sets,
where each set defines a different qualitative value.

ftOpt <- optimizeFeatureFinding(anaInfo, "openms",
list(chromFWHM = c(4, 8), isotopeFilteringModel =

"metabolites (5% RMS)"),↪→

list(chromFWHM = c(4, 8), isotopeFilteringModel =
"metabolites (2% RMS)"))↪→
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In the above example there are two parameter sets: both define the numeric chromFWHM parameter, whereas
the qualitative isotopeFilteringModel parameter has a different value for each. Note that we had to
specify the chromFWHM twice, this can be remediated by using the templateParams argument:

ftOpt <- optimizeFeatureFinding(anaInfo, "openms",
list(isotopeFilteringModel = "metabolites (5% RMS)"),
list(isotopeFilteringModel = "metabolites (2% RMS)"),
templateParams = list(chromFWHM = c(4, 8)))

As its name suggests, the templateParams argument serves as a template parameter set, and its values are
essentially combined with each given parameter set. Note that current support for optimizing qualitative
parameters is relatively basic and time consuming. This is because tests are essentially repeated for each
parameter set (e.g. in the above example the chromFWHM parameter is optimized twice, each time with a
different value for isotopeFilteringModel).

8.3.2 Processing optmization results

The results of an optimization process are stored in objects from the S4 optimizationResult class. Several
methods are defined to inspect and visualize these results.

The optimizedParameters() function is used to inspect the best parameter settings. Similarly, the
optimizedObject() function can be used to obtain the object that was created with these settings (i.e. a
features or featureGroups object).

optimizedParameters(ftOpt) # best settings for whole experiment

#> $chromFWHM
#> [1] 3.75
#>
#> $mzPPM
#> [1] 13.5
#>
#> $minFWHM
#> [1] 1.4
#>
#> $maxFWHM
#> [1] 35

optimizedObject(ftOpt) # features object with best settings for whole experiment

#> A featuresOpenMS object
#> Hierarchy:
#> features
#> |-- featuresOpenMS
#> ---
#> Object size (indication): 666.5 kB
#> Algorithm: openms
#> Total feature count: 4128
#> Average feature count/analysis: 4128
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#> Analyses: solvent-pos-1 (1 total)
#> Replicate groups: solvent-pos (1 total)
#> Replicate groups used as blank: solvent-pos (1 total)

Results can also be obtained for specific parameter sets/iterations.

optimizedParameters(ftOpt, 1) # best settings for first parameter set

#> $chromFWHM
#> [1] 3.75
#>
#> $mzPPM
#> [1] 13.5
#>
#> $minFWHM
#> [1] 1.4
#>
#> $maxFWHM
#> [1] 35

optimizedParameters(ftOpt, 1, 1) # best settings for first parameter set and experiment
iteration↪→

#> $chromFWHM
#> [1] 5
#>
#> $mzPPM
#> [1] 10
#>
#> $minFWHM
#> [1] 1
#>
#> $maxFWHM
#> [1] 35

optimizedObject(ftOpt, 1) # features object with best settings for first parameter set

#> A featuresOpenMS object
#> Hierarchy:
#> features
#> |-- featuresOpenMS
#> ---
#> Object size (indication): 666.5 kB
#> Algorithm: openms
#> Total feature count: 4128
#> Average feature count/analysis: 4128
#> Analyses: solvent-pos-1 (1 total)
#> Replicate groups: solvent-pos (1 total)
#> Replicate groups used as blank: solvent-pos (1 total)
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The plot() function can be used to visualize optimization results. This function will plot graphs for results
of all tested parameter pairs. The graphs can be contour, image or perspective plots (as specified by the
type argument).

plot(ftOpt, paramSet = 1, DoEIteration = 1) # contour plots for first param
set/experiment↪→
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plot(ftOpt, paramSet = 1, DoEIteration = 1, type = "persp") # pretty perspective plots
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Please refer to the reference manual for more methods to inspect optimization results (e.g. ?optimizationResult).

8.4 Chromatographic peak qualities

The algorithms used by findFeatures detect chromatographic peaks automatically to find the features.
However, it is common that not all detected features have ‘proper’ chromatographic peaks, and some features
could be just noise. The MetaClean R package supports various quality measures for chromatographic
peaks. The quality measures include Gaussian fit, symmetry, sharpness and others. In addition, MetaClean
averages all feature data for each feature group and adds a few additional group specific quality measures
(e.g. retention time consistency). Please see Chetnik, Petrick, and Pandey (2020) for more details. The
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calculations are integrated into patRoon, and are easily performed with the calculatePeakQualities()
generic function.

fList <- calculatePeakQualities(fList) # calculate for all features
fGroups <- calculatePeakQualities(fGroups) # calculate for all features and groups

Most often the featureGroups method is only used, unless you want to filter features (discussed below)
prior to grouping.
An extension in patRoon is that the qualities are used to calculate peak scores. The score for each quality
measure is calculated by normalizing and scaling the values into a 0-1 range, where zero is the worst and
one the best. Note that most scores are relative, hence, the values should only be used to compare features
among each other. Finally, a totalScore is calculated which sums all individual scores and serves as a rough
overall score indicator for a feature (group).
The qualities and scores are easily obtained with the as.data.table() function.

# (limit rows/columns for clarity)
as.data.table(fList)[1:5, 26:30]

#> GaussianSimilarityScore SharpnessScore TPASRScore ZigZagScore totalScore
#> <num> <num> <num> <num> <num>
#> 1: 0.6314046 3.443351e-02 0.9956949 0.9103221 6.302180
#> 2: 0.9633994 9.900530e-10 0.9944988 0.3565674 6.513205
#> 3: 0.3613087 7.565147e-10 0.8006569 0.9999449 5.651379
#> 4: 0.9151027 8.600747e-03 0.9405262 0.9637153 5.892201
#> 5: 0.3676623 1.000000e+00 0.9907657 0.8435805 5.825267

# the qualities argument is necessary to include the scores.
# valid values are: "quality", "score" or "both"
as.data.table(fGroups, qualities = "both")[1:5, 25:29]

#> TPASRScore ZigZagScore ElutionShiftScore RetentionTimeCorrelationScore totalScore
#> <num> <num> <num> <num> <num>
#> 1: 0.7305554 0.9962254 0.8421657 0.9955769 7.932541
#> 2: 0.0000000 0.9744541 0.9960804 0.7746038 6.029360
#> 3: 0.6140008 0.9171568 0.9015949 0.9776651 7.480675
#> 4: 0.8227904 0.8907734 0.9403958 0.9963785 8.451631
#> 5: 0.9848653 0.8667116 0.5754979 0.9984902 8.740135

The feature quality values can also be reviewed interactively with reports generated with report (see Re-
porting) and with checkFeatures (see here). The filter function can be used filter out low scoring features
and feature groups:

# only keep features with at least 0.3 Modality score and 0.5 symmetry score
fList <- filter(fList, qualityRange = list(ModalityScore = c(0.3, Inf),

SymmetryScore = c(0.5, Inf)))

# same as above
fGroups <- filter(fGroups, featQualityRange = list(ModalityScore = c(0.3, Inf),

SymmetryScore = c(0.5, Inf)))

# filter group averaged data
fGroups <- filter(fGroups, groupQualityRange = list(totalScore = c(0.5, Inf)))
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8.4.1 Applying machine learning with MetaClean

An important feature of MetaClean is to use the quality measures to train a machine learning model to
automatically recognize ‘good’ and ‘bad’ features. patRoon provides a few extensions to simplify training
and using a model. Furthermore, while MetaClean was primarily designed to work with XCMS, the extensions
of patRoon allow the usage of data from all the algorithms supported by patRoon.

The getMCTrainData function can be used to convert data from a feature check session to training data that
can be used by MetaClean. This allows you to use interactively select good/bad peaks. The workflow looks
like this:

# untick the 'keep' checkbox for all 'bad' feature groups
checkFeatures(fGroupsTrain, "train_session.yml")

# get train data. This gives comparable data as MetaClean::getPeakQualityMetrics()
trainData <- getMCTrainData(fGroupsTrain, "train_session.yml")

# use train data with MetaClean with MetaClean::runCrossValidation(),
# MetaClean::getEvaluationMeasures(), MetaClean::trainClassifier() etc
# --> see the MetaClean vignette for details

Once you have created a model with MetaClean it can be used with the predictCheckFeaturesSession()
function:

predictCheckFeaturesSession(fGroups, "model_session.yml", model)

This will generate another check session file: all the feature groups that are considered good will be with a
‘keep’ state, the others without. As described elsewhere, the checkFeatures function is used to review the
results from a session and the filter function can be used to remove unwanted feature groups. Note that
calculatePeakQualitites() must be called before getMCTrainData/predictCheckFeaturesSession can
be used.

NOTE MetaClean only predicts at the feature group level. Thus, only the kept feature groups
from a feature check session will be used for training, and any indivual features that were marked
as removed will be ignored.

8.5 Exporting and converting feature data

The feature group data obtained during the workflow can be exported to various formats with the export()
generic function. There are currently three formats supported: "brukerpa" (Bruker ProfileAnalysis),
"brukertasq" (Bruker TASQ) and "mzmine" (mzMine). The former exports a ‘bucket table’ which can
be loaded in ProfileAnalysis, the second and third export a target list that can be processed with TASQ and
mzMine, respectively.

The getXCMSSet() function converts a features or featureGroups object to an xcmsSet object which can
be used for further processing with xcms. Similarly, the getXCMSnExp() function can be used for conversion
to an XCMS3 style XCMSnExp object, and the getPICSet() function can be used to convert features to
KPIC2 data.

Some examples for these functions are shown below.
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export(fGroups, "brukertasq", out = "my_targets.csv")

# convert features to xcmsSet.
# NOTE: loadRawData should only be FALSE when the analysis data files cannot be
# loaded by the algorithm (e.g. when features were obtained with DataAnalysis and data

was not exported to mz(X)ML)↪→

xset <- getXCMSSet(fList, loadRawData = TRUE)
xsetg <- getXCMSSet(fGroups, loadRawData = TRUE) # get grouped xcmsSet

# using the new XCMS3 interface
xdata <- getXCMSnExp(fList)
xdata <- getXCMSnExp(fGroups)

# KPIC2 conversion. Like XCMS it optionally loads the raw data.
picSet <- getPICSet(fList, loadRawData = TRUE)

8.6 Algorithm consensus

With patRoon you have the option to choose between several algorithms for most workflow steps. Each
algorithm is typically characterized by its efficiency, robustness, and may be optimized towards certain data
properties. Comparing their output is therefore advantageous in order to design an optimum workflow.
The consensus() generic function will compare different results from different algorithms and returns a
consensus, which may be based on minimal overlap, uniqueness or simply a combination of all results from
involved objects. The output from the consensus() function is of similar type as the input types and is
therefore compatible to any ‘regular’ further data processing operations (e.g. input for other workflow steps
or plotting). Note that a consensus can also be made from objects generated by the same algorithm, for
instance, to compare or combine results obtained with different parameters (e.g. different databases used for
compound annotation).

The consensus() generic is defined for most workflow objects. Some of its common function arguments are
listed below.

Argument Classes Remarks
obj, ... All Two or more objects (of the same type) that

should be compared to generate the consensus.
compThreshold,
relAbundance,
absAbundance,
formThreshold

compounds, formulas,
featureGroupsComparison

The minimum overlap (relative/absolute) for a
result (feature, candidate) to be kept.

uniqueFrom compounds, formulas,
transformationProductsStructure,
featureGroupsComparison

Only keep unique results from specified objects.

uniqueOutercompounds, formulas,
transformationProductsStructure,
featureGroupsComparison

Should be combined with uniqueFrom. If TRUE
then only results are kept which are also unique
between the objects specified with uniqueFrom.

Note that current support for generating a consensus between components objects is very simplistic; here
results are not compared, but the consensus simply consists a combination of all the components from each
object.

Generating a consensus for feature groups involves first generating a featureGroupsComparison object. This
step is necessary since (small) deviations between retention times and/or mass values reported by different
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feature finding/grouping algorithms complicates a direct comparison. The comparison objects are made
by the comparison() function, and its results can be visualized by the plotting functions discussed in the
previous chapter.

Some examples are shown below

compoundsCons <- consensus(compoundsMF, compoundsSIR) # combine MetFrag/SIRIUS results
compoundsCons <- consensus(compoundsMF, compoundsSIR,

compThreshold = 1) # only keep results that overlap

TPsCons <- consensus(TPsLib, TPsBT) # combine library and BioTransformer TPs

fGroupComp <- comparison(fGroupsXCMS, fGroupsOpenMS, fGroupsEnviPick,
groupAlgo = "openms")

plotVenn(fGroupComp) # visualize overlap/uniqueness
fGroupsCons <- consensus(fGroupComp,

uniqueFrom = 1:2) # only keep results unique in OpenMS+XCMS
fGroupsCons <- consensus(fGroupComp,

uniqueFrom = 1:2,
uniqueOuter = TRUE) # as above, but also exclude any overlap

between OpenMS/XCMS↪→

8.7 MS libraries

The loadMSLibraries() function is used to load MS spectral libraries, and was already briefly introduced for
compound annotation. Currently, loading of MSP files and MoNA JSON files is supported, while loading of
formula annotations for MS peaks is currently only supported for the latter. The underlying algorithms im-
plement several optimizations to efficiently load large number of records. Furthermore, loadMSLibraries()
automatically verifies record data such as formulas, adducts and masses, and automatically calculates missing
or invalid data where possible.

mslibraryMSP <- loadMSLibrary("MoNA-export-CASMI_2016.msp", "msp")
mslibraryJSON <- loadMSLibrary("MoNA-export-CASMI_2016.json", "json")

Several advanced parameters are available that influence the loading of MS library data, see the reference
manual (?loadMSLibrary) for details.

Once loaded, the usual methods are available to inspect its data:

show(mslibraryMSP)

#> A MSLibrary object
#> Hierarchy:
#> workflowStep
#> |-- MSLibrary
#> ---
#> Object size (indication): 101.6 kB
#> Algorithm: msp
#> Total records: 26
#> Total peaks: 318
#> Total annotated peaks: 0 (0.00%)
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mslibraryMSP[[1]] # MS/MS spectrum for first candidate

#> mz intensity
#> <num> <num>
#> 1: 135.0441 1.001001
#> 2: 161.0594 0.500501
#> 3: 163.0379 0.600601
#> 4: 173.0590 0.200200
#> 5: 176.0699 0.200200
#> ---
#> 44: 353.1191 1.201201
#> 45: 354.1323 100.000000
#> 46: 355.1351 20.820821
#> 47: 356.1374 2.702703
#> 48: 357.1401 0.300300

mslibraryJSON[["SM801601"]] # a record with annotations

#> mz intensity annotation
#> <num> <num> <char>
#> 1: 65.0388 0.100228 C5H5
#> 2: 91.0541 0.922448 C7H7
#> 3: 93.0573 5.489900 C6H7N
#> 4: 106.0651 0.101855 C7H8N
#> 5: 108.0807 100.000000 C7H10N
#> 6: 109.0648 2.004170 C7H9O
#> 7: 132.0807 0.926004 C9H10N
#> 8: 150.0913 76.554515 C9H12NO

# overview of all metadata (select few columns for readability)
records(mslibraryJSON)[, .(DB_ID, Name, InChIKey, formula)]

#> DB_ID Name InChIKey formula
#> <char> <char> <char> <char>
#> 1: SM800003 1,2,3-Triazole QWENRTYMTSOGBR-UHFFFAOYSA-N C2H3N3
#> 2: SM800201 1-Naphthylamine RUFPHBVGCFYCNW-UHFFFAOYSA-N C10H9N
#> 3: SM800553 2,3-Dihydroxybiphenyl YKOQAAJBYBTSBS-UHFFFAOYSA-N C12H10O2
#> 4: SM800653 2,4-Dibromphenol FAXWFCTVSHEODL-UHFFFAOYSA-N C6H4Br2O
#> 5: SM800802 2-Aminoanthracene YCSBALJAGZKWFF-UHFFFAOYSA-N C14H11N
#> ---
#> 618: SM884401 Anthranilic acid RWZYAGGXGHYGMB-UHFFFAOYSA-N C7H7NO2
#> 619: SM884552 Fipronil sulfide FQXWEKADCSXYOC-UHFFFAOYSA-N C12H4Cl2F6N4S
#> 620: SM884652 Fipronil sulfone LGHZJDKSVUTELU-UHFFFAOYSA-N C12H4Cl2F6N4O2S
#> 621: SM884701 N-Cyclohexyl-2-benzothiazol-amine UPWPIFMHSFSVLE-UHFFFAOYSA-N C13H16N2S
#> 622: SM884952 Fipronil desulfinyl JWKXVHLIRTVXLD-UHFFFAOYSA-N C12H4Cl2F6N4

# convert all data to a data.table (may be huge!)
as.data.table(mslibraryMSP)[, .(DB_ID, SMILES, formula, mz, intensity)]

#> Key: <DB_ID>
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#> DB_ID SMILES formula mz intensity
#> <char> <char> <char> <num> <num>
#> 1: SMI00001 CN1CC2=C(C=CC3=C2OCO3)[C@@H]4[C@H]1C5=CC6=C(C=C5C[C@@H]4O)OCO6 C20H19NO5 135.0441 1.001001
#> 2: SMI00001 CN1CC2=C(C=CC3=C2OCO3)[C@@H]4[C@H]1C5=CC6=C(C=C5C[C@@H]4O)OCO6 C20H19NO5 161.0594 0.500501
#> 3: SMI00001 CN1CC2=C(C=CC3=C2OCO3)[C@@H]4[C@H]1C5=CC6=C(C=C5C[C@@H]4O)OCO6 C20H19NO5 163.0379 0.600601
#> 4: SMI00001 CN1CC2=C(C=CC3=C2OCO3)[C@@H]4[C@H]1C5=CC6=C(C=C5C[C@@H]4O)OCO6 C20H19NO5 173.0590 0.200200
#> 5: SMI00001 CN1CC2=C(C=CC3=C2OCO3)[C@@H]4[C@H]1C5=CC6=C(C=C5C[C@@H]4O)OCO6 C20H19NO5 176.0699 0.200200
#> ---
#> 314: SMI00172 C1=CC=C(C=C1)NN=CC2=CC=CC=C2N C13H13N3 120.0678 22.170483
#> 315: SMI00172 C1=CC=C(C=C1)NN=CC2=CC=CC=C2N C13H13N3 121.0756 6.520678
#> 316: SMI00172 C1=CC=C(C=C1)NN=CC2=CC=CC=C2N C13H13N3 167.0729 28.015663
#> 317: SMI00172 C1=CC=C(C=C1)NN=CC2=CC=CC=C2N C13H13N3 168.0810 13.500651
#> 318: SMI00172 C1=CC=C(C=C1)NN=CC2=CC=CC=C2N C13H13N3 195.0917 8.223496

Furthermore, like many other objects in patRoon, the MS library objects can be subset and filtered:

mslibrarySub <- mslibrary[1:100] # only keep first 100 records

# only keep records a neutral mass of 100-200
mslibraryF <- filter(mslibrary, massRange = c(100, 200))
# remove records with neutral mass below 100
mslibraryF <- filter(mslibrary, massRange = c(0, 100), negate = TRUE)
# only keep mass peaks with m/z 100-500
mslibraryF <- filter(mslibrary, mzRangeSpec = c(100, 500))
# remove low intensity peaks (<1%) and only keep top 10
mslibraryF <- filter(mslibrary, relMinIntensity = 0.01, topMost = 10)
# only keep mass peak with annotations
mslibraryF <- filter(mslibraryJSON, onlyAnnotated = TRUE)

In addition, the properties filter may be useful to tailor the library data. The library properties can be
obtained as following:

names(records(mslibrary)) # get all property names

#> [1] "Name" "Synon" "DB_ID" "InChIKey"
#> [5] "InChI" "Precursor_type" "Spectrum_type" "PrecursorMZ"
#> [9] "Instrument_type" "Instrument" "Ion_mode" "Collision_energy"
#> [13] "formula" "MW" "neutralMass" "Comments"
#> [17] "SMILES" "SPLASH" "CAS" "PubChemCID"
#> [21] "ChemSpiderID" "Ionization" "Resolution"

unique(records(mslibrary)[["Instrument_type"]]) # Get the available instrument types

#> [1] "LC-ESI-QTOF" "LC-APCI-ITFT" "APCI-ITFT"

Then to filter the MS library:

# only keep APCI instrument types
mslibraryF <- filter(mslibrary, properties = list(Instrument_type = c("LC-APCI-ITFT",

"APCI-ITFT")))↪→

# remove Q-TOF by negation
mslibraryF <- filter(mslibrary, properties = list(Instrument_type = "LC-ESI-QTOF"),

negate = TRUE)↪→
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More advanced filtering can be performed with the delete() generic function, see the reference manual for
details (?MSLibrary).

Finally, functionality exists to convert, export and merge MS libraries:

# Convert the MS library to a suspect list.
# By setting collapse to TRUE, all records with the same first block InChIKey
# are collapsed and mass peaks are averaged.
suspL <- convertToSuspects(mslibrary, adduct = "[M+H]+", collapse = TRUE)
# Amend custom suspect list with library data (fragments_mz column)
suspL <- convertToSuspects(mslibrary, adduct = "[M+H]+", suspects =

patRoonData::suspectsPos)↪→

export(mslibrary, out = "myMSLib.msp") # export to a new MSP library

mslibraryM <- merge(mslibraryMSP, mslibraryJSON) # merge two libraries

8.8 Compound clustering

When large databases such as PubChem or ChemSpider are used for compound annotation, it is common
to find many candidate structures for even a single feature. While choosing the right scoring settings can
significantly improve their ranking, it is still very much possible that many candidates of potential interest
remain. In this situation it might help to perform compound clustering. During this process, all candidates
for a feature are clustered hierarchically on basis of similar chemical structure. From the resulting cluster the
maximum common substructure (MCS) can be derived, which represents the largest possible substructure
that ‘fit’ in all candidates. By visual inspection of the MCS it may be possible to identify likely common
structural properties of a feature.

In order to perform compound clustering the makeHCluster() generic function should be used. This function
heavily relies on chemical fingerprinting functionality provided by rcdk.

compounds <- generateCompounds(...) # get our compounds
compsClust <- makeHCluster(compounds)

This function accepts several arguments to fine tune the clustering process:

• method: the clustering method (e.g. "complete" (default), "ward.D2"), see ?hclust for options
• fpType: finger printing type ("extended" by default), see ?get.fingerprint
• fpSimMethod: similarity method for generating the distance method ("tanimoto" by default), see

?fp.sim.matrix

For all arguments see the reference manual (?makeHClust).

The resulting object is of type compoundsCluster. Several methods are defined to modify and inspect these
results:

# plot MCS of first cluster from candidates of M192_R355_191
plotStructure(compsClust, groupName = "M192_R355_191", 1)

# plot dendrogram
plot(compsClust, groupName = "M192_R355_191")

# re-assign clusters for a feature group
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compsClust <- treeCut(compsClust, k = 5, groupName = "M192_R355_191")
# ditto, but automatic cluster determination
compsClust <- treeCutDynamic(compsClust, minModuleSize = 3, groupName = "M192_R355_191")

For a complete overview see the reference manual (?compoundsCluster).

8.9 Feature regression analysis

Some basic support in patRoon is available to perform simple linear regression on feature intensities vs
given experimental conditions. Examples of such conditions are dilution factor, sampling time or initial
concentration of a parent in a degradation experiment. By testing if there is a significant linearity, features
of interest can be isolated in a relative easy way. Originally, this functionality was implemented as a very basic
method to perform rough calculations of concentrations. However, the next sections describes a much better
way by using the MS2Quant package. Regardless, this functionality still uses ‘concentrations’ as terminology
for the experimental conditions of interest. The conditions are specified in the conc column of the analysis
information, for instance:

# obtain analysis information as usual, but add some experimental parameters of interest
(dilution, time etc).↪→

# The blanks are set to NA, whereas the standards are set to increasing levels.
anaInfo <- generateAnalysisInfo(paths = patRoonData::exampleDataPath(),

groups = c(rep("solvent", 3), rep("standard", 3)),
blanks = "solvent",
concs = c(NA, NA, NA, 1, 2, 3))

If no experimental conditions are available for a particular analysis then the conc value should be NA. For
these analyses the experimental condition will be calculated using the regression model obtained from the
other analyses.
The as.data.table() function (or as.data.frame()) can then be used to calculate regression data:

# use areas for quantitation and make sure that feature data is reported
# (only relevant columns are shown for clarity)
as.data.table(fGroups, areas = TRUE, features = TRUE, regression = TRUE)

#> group conc RSQ intercept slope conc_reg
#> <char> <num> <num> <num> <num> <num>
#> 1: M109_R192_20 1 0.71446367 193338.67 -4928 1.3649892
#> 2: M109_R192_20 2 0.71446367 193338.67 -4928 1.2700216
#> 3: M109_R192_20 3 0.71446367 193338.67 -4928 3.3649892
#> 4: M111_R330_23 1 0.08902714 85338.67 -370 -0.8468468
#> 5: M111_R330_23 2 0.08902714 85338.67 -370 5.6936937
#> ---
#> 419: M407_R239_672 2 0.99560719 210036.00 -11734 2.0767002
#> 420: M407_R239_672 3 0.99560719 210036.00 -11734 2.9616499
#> 421: M425_R319_676 1 0.46488086 193198.67 10896 1.6194322
#> 422: M425_R319_676 2 0.46488086 193198.67 10896 0.7611356
#> 423: M425_R319_676 3 0.46488086 193198.67 10896 3.6194322

The calculated experimental conditions are stored in the conc_reg column (this column is only present if
features=TRUE). In addition, the table also contains other regression data such as RSQ, intercept and
slope. To perform basic trend analysis the RSQ (i.e. R squared) can be used:
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fGroupsTab <- as.data.table(fGroups, areas = TRUE, features = FALSE, regression = TRUE)
# subset fGroups with reasonable correlation
increasingFGroups <- fGroups[, fGroupsTab[RSQ >= 0.8, group]]

8.10 Predicting toxicities and concentrations (MS2Tox and MS2Quant integra-
tion)

The MS2Tox and MS2Quant R packages predict toxicities and feature concentrations using a machine learning
approach. The predictions are performed with either SMILES data or fingerprints calculated from MS/MS
data with SIRIUS+CSI:FingerID. While using SMILES data is generally more accurate, using MS/MS
fingerprints is generally faster and may be more suitable for features without know or suspected structure.

In patRoon the predictions are done in two steps:

1. The LC50 values (toxicity prediction) or response factors (concentration prediction) are calculated for
given SMILES or MS/MS fingerprint data using MS2Tox/MS2Quant. This step is performed by the
predictTox()/predictConcs() method function.

2. The predicted LC50 values are used to assign toxicities/concentrations to feature data. This is per-
formed by the calculateTox()/calculateConcs() method function.

Various workflow data can be used to perform the predictions for step 1:

a. Suspect hits that were obtained with screenSuspects (see suspect screening).
b. Formula annotations obtained with SIRIUS+CSI:FingerID.
c. Compound annotations obtained with SIRIUS+CSI:FingerID.
d. Compound annotations obtained with other algorithms, e.g. MetFrag.

For a and d SMILES is used to perform the calculations, for b MS/MS fingerprints are used and for c either
can be used.

NOTE For option b, make sure that getFingerprints=TRUE and SIRIUS logins are handled
when running generateFormulas() in order to obtain fingerprints.

8.10.1 Predicting toxicities

Some example workflows are shown below:

# Calculate toxicity for suspect hits.
fGroupsSuspTox <- predictTox(fGroupsSusp)
fGroupsSuspTox <- calculateTox(fGroupsSuspTox)

# Calculate toxicity for compound hits. Limit to the top 5 to reduce calculation time.
compoundsTop5 <- filter(compounds, topMost = 5)
compoundsTox <- predictTox(compoundsTop5)
fGroupsTox <- calculateTox(fGroups, compoundsTox)

It is also possible to calculate toxicities from multiple workflow objects:
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fGroupsSuspTox <- predictTox(fGroupsSusp) # as above

# Predict toxicities from compound candidates, using both SMILES and MS/MS fingerprints
# compoundsSuspSIR is an object produced with generateCompounds() with algorithm="sirius"
compoundsSuspSIRTox <- predictTox(compoundsSuspSIR, type = "both")

# Assign toxicities to feature groups from both suspect hits and SIRIUS annotations
fGroupsSuspTox <- calculateTox(fGroupsSuspTox, compoundsSuspSIRTox)

More details are in the reference manual: ?`pred-tox`.

8.10.2 Predicting concentrations

The workflow to predict concentrations is quite similar to predicting toxicities. However, before we can start
we first have to specify the calibrants and the LC gradient elution program.

The calibrant data is used by MS2Quant to convert predicted ionization efficiencies to actual response factors,
which are specific to the used LC instrument and methodology. For this purpose, several mixtures with
known concentrations (i.e. standards) should be measured alongside your samples. The calibrants should be
specified as a data.frame, for instance:

name SMILES intensity conc rt

Atrazine CCNc1nc(nc(n1)Cl)NC(C)C 32708 1 336.6
Atrazine CCNc1nc(nc(n1)Cl)NC(C)C 66880 2 336.6
Atrazine CCNc1nc(nc(n1)Cl)NC(C)C 174087 5 336.6
Atrazine CCNc1nc(nc(n1)Cl)NC(C)C 371192 10 336.6
Atrazine CCNc1nc(nc(n1)Cl)NC(C)C 806749 25 336.6

Atrazine CCNc1nc(nc(n1)Cl)NC(C)C 1852591 50 336.6
Carbamazepine c1ccc2c(c1)C=Cc3ccccc3N2C(=N)O 25231 1 349.2
Carbamazepine c1ccc2c(c1)C=Cc3ccccc3N2C(=N)O 47831 2 349.2
Carbamazepine c1ccc2c(c1)C=Cc3ccccc3N2C(=N)O 118843 5 349.2
Carbamazepine c1ccc2c(c1)C=Cc3ccccc3N2C(=N)O 211395 10 349.2

Carbamazepine c1ccc2c(c1)C=Cc3ccccc3N2C(=N)O 545192 25 349.2
Carbamazepine c1ccc2c(c1)C=Cc3ccccc3N2C(=N)O 1083568 50 349.2
DEET CCN(CC)C(=O)c1cccc(c1)C 45061 1 355.8
DEET CCN(CC)C(=O)c1cccc(c1)C 84859 2 355.8
DEET CCN(CC)C(=O)c1cccc(c1)C 228902 5 355.8

DEET CCN(CC)C(=O)c1cccc(c1)C 434161 10 355.8
DEET CCN(CC)C(=O)c1cccc(c1)C 1133166 25 355.8
DEET CCN(CC)C(=O)c1cccc(c1)C 2385472 50 355.8
Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O 41465 1 324.0
Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O 89684 2 324.0

Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O 230890 5 324.0
Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O 400385 10 324.0
Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O 1094329 25 324.0
Venlafaxine CN(C)CC(C1=CC=C(C=C1)OC)C2(CCCCC2)O 1965139 50 324.0

The intensity column should contain either the peak intensity (height) or area. Note that some feature
detection algorithms can sometimes produce inaccurate peak areas, and the area determination methodology
is often different among algorithms. For this reason, using peak intensities may be more reliable, however,
it is worth testing this with your data.

It is also possible to use the getQuantCalibFromScreening() function to automatically create the calibrant
table from feature group data:
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calibList <- data.frame(...) # this should be a suspect list with your calibrants
fGroups <- screenSuspects(fGroups, calibList) # screen for the calibrants
concs <- data.frame(...) # concentration data for each calibrant compound, see below
calibrants <- getQuantCalibFromScreening(fGroups, concs)
calibrants <- getQuantCalibFromScreening(fGroups, concs, areas = TRUE) # obtain feature

areas instead of intensities↪→

The first step is to perform a screening for the calibrant compounds. Please ensure that this list should
contains SMILES data, and to ensure correct feature assignment it is highly recommended to include retention
times. The second requirement for getQuantCalibFromScreening() is a table with concentrations for each
calibrant compound, e.g.:

concs <- data.frame(
name = c("DEET", "1h-benzotriazole", "Caffeine", "Atrazine", "Carbamazepine",

"Venlafaxine"),↪→

standard_1 = c(1.00, 1.05, 1.10, 0.99, 1.01, 1.12),
standard_2 = c(2.00, 2.15, 2.20, 1.98, 2.02, 1.82),
standard_5 = c(5.01, 5.05, 5.22, 5.00, 4.88, 4.65),
standard_10 = c(10.2, 10.11, 10.23, 11.77, 11.75, 12.13),
standard_25 = c(25.3, 25.12, 25.34, 24.89, 24.78, 24.68),
standard_50 = c(50.34, 50.05, 50.10, 49.97, 49.71, 50.52)

)
concs

#> name standard_1 standard_2 standard_5 standard_10 standard_25 standard_50
#> 1 DEET 1.00 2.00 5.01 10.20 25.30 50.34
#> 2 1h-benzotriazole 1.05 2.15 5.05 10.11 25.12 50.05
#> 3 Caffeine 1.10 2.20 5.22 10.23 25.34 50.10
#> 4 Atrazine 0.99 1.98 5.00 11.77 24.89 49.97
#> 5 Carbamazepine 1.01 2.02 4.88 11.75 24.78 49.71
#> 6 Venlafaxine 1.12 1.82 4.65 12.13 24.68 50.52

The concentrations are specified separately for each calibrant compound. The column names should follow
the names of the replicate groups assigned to the standards. The concentration unit is µg/l by default. The
next section describes how this can be changed.

The gradient elution program is also specified by a data.frame, which for every time point (in seconds!)
describes the percentage of ‘B’. In this case, ‘B’ represents the total amount of organic modifier.

eluent <- data.frame(
time = c(0, 180, 600, 900, 960),
B = c(10, 30, 100, 100, 10)

)
plot(eluent, type = "l")
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#> time B
#> 1 0 10
#> 2 180 30
#> 3 600 100
#> 4 900 100
#> 5 960 10

Then, the workflow to predict concentrations is very similar then predicting toxicities (previous section):

# Calculate concentrations for suspect hits.
fGroupsSuspConc <- predictRespFactors(

fGroupsSusp,
calibrants = calibrants, eluent = eluent,
organicModifier = "MeCN", # organic modifier: MeOH or MeCN
pHAq = 4 # pH of the aqueous part of the mobile phase

)
# set areas to TRUE if the calibrant table contains areas
fGroupsSuspConc <- calculateConcs(fGroupsSuspConc, areas = FALSE)

As was shown for toxicities it is possible to use different data sources (e.g. compound annotations, suspects)
for predictions.

More details are in the reference manual: ?`pred-quant`.

8.10.3 Toxicity and concentration units

The default unit for toxicity and concentration data is µg/l. However, this can be configured when calling
the predictTox()/predictRespFactors() functions:

fGroupsSuspTox <- predictTox(fGroupsSusp) # default unit: ug/l
fGroupsSuspTox <- predictTox(fGroupsSusp, concUnit = "ug/l") # same as above
fGroupsSuspTox <- predictTox(fGroupsSusp, concUnit = "mM") # millimolar
fGroupsSuspTox <- predictTox(fGroupsSusp, concUnit = "log mM") # unit used by MS2Tox

# calculated concentrations are ng/l, calibrants are specified in ug/l
# (by default calibConcUnit=concUnit)
fGroupsSuspConc <- predictRespFactors(

fGroupsSusp, calibrants = calibrants, eluent = eluent,
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organicModifier = "MeCN", pHAq = 4,
concUnit = "ng/l", calibConcUnit = "ug/l"

)

See the reference manuals (?`pred-tox`/?`pred-quant`) For more details on which units can be specified

8.10.4 Inspecting predicted values

The raw toxicity and concentration data assigned to feature groups can be retrieved with the toxicities()
and concentrations() method functions, respectively.

toxicities(fGroupsSuspTox)

#> group type candidate candidate_name LC50
#> <char> <char> <char> <char> <num>
#> 1: M120_R268_30 suspect [nH]1nnc2ccccc12 1H-benzotriazole 59755.77
#> 2: M137_R249_53 suspect NC(=O)Nc1ccccc1 N-Phenyl urea 101025.89
#> 3: M146_R225_70 suspect Oc1ccc2ccccc2n1 2-Hydroxyquinoline 48833.62
#> 4: M146_R248_69 suspect Oc1ccc2ccccc2n1 2-Hydroxyquinoline 48833.62
#> 5: M146_R309_68 suspect Oc1ccc2ccccc2n1 2-Hydroxyquinoline 48833.62

concentrations(fGroupsSuspConc)

#> group type candidate candidate_name standard-pos-1 standard-pos-2 standard-pos-3
#> <char> <char> <char> <char> <num> <num> <num>
#> 1: M120_R268_30 suspect [nH]1nnc2ccccc12 1H-benzotriazole 43.070773 39.905306 35.21956
#> 2: M137_R249_53 suspect NC(=O)Nc1ccccc1 N-Phenyl urea 18.485430 19.864756 17.36268
#> 3: M146_R225_70 suspect Oc1ccc2ccccc2n1 2-Hydroxyquinoline 15.700200 17.662215 18.49330
#> 4: M146_R248_69 suspect Oc1ccc2ccccc2n1 2-Hydroxyquinoline 19.030263 20.207821 19.54181
#> 5: M146_R309_68 suspect Oc1ccc2ccccc2n1 2-Hydroxyquinoline 7.978394 8.646156 8.67157

If there were multiple candidates for a single feature group then these are split over the table rows:

toxicities(fGroupsTox)

#> group type candidate candidate_name LC50
#> <char> <char> <char> <char> <num>
#> 1: M120_R268_30 compound C1=CC2=C(C=NN2)N=C1 1H-pyrazolo[4,3-b]pyridine 96147.35
#> 2: M120_R268_30 compound C1=CC2=C(N=C1)N=CN2 1H-imidazo[4,5-b]pyridine 125872.29
#> 3: M120_R268_30 compound C1=CC2=NNN=C2C=C1 2H-benzotriazole 65155.26
#> 4: M120_R268_30 compound C1=CN2C(=CC=N2)N=C1 pyrazolo[1,5-a]pyrimidine 81286.35
#> 5: M120_R268_30 compound C1=CNC2=CN=CN=C21 5H-pyrrolo[3,2-d]pyrimidine 88213.59
#> ---
#> 16: M192_R355_191 compound CCN(CC)C(=O)C1=CC=C(C=C1)C N,N-diethyl-4-methylbenzamide 86651.19
#> 17: M192_R355_191 compound CCN(CC)C(=O)C1=CC=CC(=C1)C N,N-diethyl-3-methylbenzamide 114064.57
#> 18: M192_R355_191 compound CCN(CC)C(=O)C1=CC=CC=C1C N,N-diethyl-2-methylbenzamide 81126.15
#> 19: M192_R355_191 compound CCN(CC)C(=O)CC1=CC=CC=C1 N,N-diethyl-2-phenylacetamide 88445.02
#> 20: M192_R355_191 compound C[C@H]1[C@@H](OCCN1C)C2=CC=CC=C2 (2S,3S)-3,4-dimethyl-2-phenylmorpholine 132385.09
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The as.data.table() method function, which was discussed previously, can be used to summarize toxicity
and concentration values.

# NOTE: NA values are filtered and columns are subset for readability
as.data.table(fGroupsTox)[!is.na(LC50), c("group", "LC50", "LC50_types")]

#> group LC50 LC50_types
#> <char> <num> <char>
#> 1: M120_R268_30 91334.97 compound
#> 2: M137_R249_53 149557.04 compound
#> 3: M146_R309_68 39154.68 compound
#> 4: M192_R355_191 100534.41 compound

concCols <- c("group", paste0(analyses(fGroupsSuspConc), "_conc"), "conc_types")
as.data.table(fGroupsSuspConc)[!is.na(conc_types), concCols, with = FALSE]

#> group standard-pos-1_conc standard-pos-2_conc standard-pos-3_conc conc_types
#> <char> <num> <num> <num> <char>
#> 1: M120_R268_30 43.070773 39.905306 35.21956 suspect
#> 2: M137_R249_53 18.485430 19.864756 17.36268 suspect
#> 3: M146_R309_68 7.978394 8.646156 8.67157 suspect
#> 4: M146_R248_69 19.030263 20.207821 19.54181 suspect
#> 5: M146_R225_70 15.700200 17.662215 18.49330 suspect

The as.data.table() method function aggregates the data for a feature group in case multiple can-
didates were assigned to it. By default the values are mean averaged, but this be changed with the
toxAggrParams/concAggrParams arguments, for instance:

# as above, but aggregate by taking maximum values
as.data.table(fGroupsTox, toxAggrParams = getDefPredAggrParams(max))[!is.na(LC50),

c("group", "LC50", "LC50_types")]↪→

#> group LC50 LC50_types
#> <char> <num> <char>
#> 1: M120_R268_30 125872.29 compound
#> 2: M137_R249_53 314718.38 compound
#> 3: M146_R309_68 49051.68 compound
#> 4: M192_R355_191 132385.09 compound

If the as.data.table() method is used on suspect screening results, and predictions were performed directly
for suspect hits, then predicted values can be reported for individual suspect match instead of aggregating
them per feature group:

# Reports predicted values for each suspect separately. If multiple suspects are assigned
to a feature group,↪→

# then each suspect match is split into a different row.
as.data.table(fGroupsSuspTox, collapseSuspects = NULL)

Finally, the reporting functionality can be used to overview all predicted values, both aggregated and raw.
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8.10.5 Using predicted values to prioritize data

The filter() method function that was introduced before can also be used to filter data based on predicted
toxicities, response factors and concentrations. For instance, this allows you to remove annotation candidates
which are unlikely to be toxic or sensitive enough to be detected or any features with very low concentrations.
Some examples are shown below.

# compoundsSuspSIRTox is an object with predicted toxicities (LC50 values) for each
candidate↪→

# we can use the common scoreLimits filter to select a range of allowed values (min/max)
compoundsSuspSIRToxF <- filter(compoundsSuspSIRTox, scoreLimits = list(LC50_SMILES = c(0,

1E4)))↪→

# for suspects with predicted toxicities/response factors there are dedicated filters
fGroupsSuspConcF <- filter(fGroupsSuspConc, minRF = 5E4) # remove suspect hits with

response factor <5E4↪→

fGroupsSuspToxF <- filter(ffGroupsSuspTox, maxLC50 = 100) # remove suspect hits with LC50
values > 100↪→

# similarly, for feature data there are dedicated filters.
# note that these aggregate data prior to filtering (see previous section)
fGroupsConcF <- filter(fGroupsConc, absMinConc = 0.02)
# only keep features with concentrations that are at least 1% of their toxicity
# note that both concentrations/toxicity values should have been calculated with

calculateConcs()/calculateTox()↪→

fGroupsConcToxF <- filter(fGroupsConcTox, absMinConcTox = 0.01)

# also get rid of features without concentrations (these are ignored by default)
fGroupsConcF <- filter(fGroupsConc, absMinConc = 0.02, removeNA = TRUE)
# like as.data.table we can configure how values are aggregated
# here the minimum is used instead of the default mean
fGroupsToxF <- filter(fGroupsTox, absMaxTox = 5E3, predAggrParams =

getDefPredAggrParams(min))↪→

More details are found in the reference manual (?`feature-filtering`).

8.11 Fold changes

A specific statistical way to prioritize feature data is by Fold changes (FC). This is a relative simple method
to quickly identify (significant) changes between two sample groups. A typical use case is to compare the
feature intensities before and after an experiment.

To perform FC calculations we first need to specify its parameters. This is best achieved with the
getFCParams() function:

getFCParams(c("before", "after"))

#> $rGroups
#> [1] "before" "after"
#>
#> $thresholdFC
#> [1] 0.25
#>
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#> $thresholdPV
#> [1] 0.05
#>
#> $zeroMethod
#> [1] "add"
#>
#> $zeroValue
#> [1] 0.01
#>
#> $PVTestFunc
#> function (x, y)
#> t.test(x, y, paired = TRUE)$p.value
#> <bytecode: 0x562b450af8a8>
#> <environment: 0x562b2fbc0d98>
#>
#> $PVAdjFunc
#> function (pv)
#> p.adjust(pv, "BH")
#> <bytecode: 0x562b450afbb8>
#> <environment: 0x562b2fbc0d98>

In this example we generate a list with parameters in order to make a comparison between two replicate
groups: before and after. Several advanced parameters are available to tweak the calculation process.
These are explained in the reference manual (?featureGroups).

The as.data.table function for feature groups is used to perform the FC calculations.

myFCParams <- getFCParams(c("solvent-pos", "standard-pos")) # compare solvent/standard
as.data.table(fGroups, FCParams = myFCParams)[, c("group", "FC", "FC_log", "PV",

"PV_log", "classification")]↪→

#> group FC FC_log PV PV_log classification
#> <char> <num> <num> <num> <num> <char>
#> 1: M99_R14_1 8.837494e-01 -0.17829070 0.223506802 0.65070926 insignificant
#> 2: M99_R4_2 8.500464e-01 -0.23438649 0.778488444 0.10874783 insignificant
#> 3: M100_R7_3 8.009186e-01 -0.32027248 0.804751489 0.09433821 FC
#> 4: M100_R5_4 4.140000e+06 21.98119934 0.533213018 0.27309926 FC
#> 5: M100_R28_5 9.594972e-01 -0.05964952 0.975712373 0.01067819 insignificant
#> ---
#> 676: M425_R319_676 2.149907e+07 24.35777069 0.009681742 2.01404652 increase
#> 677: M427_R10_677 1.059937e+00 0.08397893 0.371260940 0.43032074 insignificant
#> 678: M427_R319_678 7.776800e+06 22.89074521 0.533213018 0.27309926 FC
#> 679: M432_R383_679 9.816400e+06 23.22676261 0.347009089 0.45965915 FC
#> 680: M433_R10_680 1.132909e+00 0.18003240 0.293217996 0.53280938 insignificant

The classification column allows you to easily identify if and how a feature changes between the two
sample groups. This can also be used to prioritize feature groups:

tab <- as.data.table(fGroups, FCParams = myFCParams)
# only keep feature groups that significantly increase or decrease
fGroupsChanged <- fGroups[, tab[classification %in% c("increase", "decrease")]$group]

The plotVolcano function can be used to visually the FC data:
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plotVolcano(fGroups, myFCParams)
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8.12 Caching

In patRoon lengthy processing operations such as finding features and generating annotation data is cached.
This means that when you run such a calculation again (without changing any parameters), the data is
simply loaded from the cache data instead of re-generating it. This in turn is very useful, for instance, if you
have closed your R session and want to continue with data processing at a later stage.

The cache data is stored in a sqlite database file. This file is stored by default under the name cache.sqlite
in the current working directory (for this reason it is very important to always restore your working direc-
tory!). However, the name and location can be changed by setting a global package option:

options(patRoon.cache.fileName = "~/myCacheFile.sqlite")

For instance, this might be useful if you want to use a shared cache file between projects.

After a while you may see that your cache file can get quite large. This is especially true when testing
different parameters to optimize your workflow. Furthermore, you may want to clear the cache after you
have updated patRoon and want to make sure that the latest code is used to generate the data. At any point
you can simply remove the cache file. A more fine tuned approach which doesn’t wipe all your cached data
is by using the clearCache() function. With this function you can selectively remove parts of the cache file.
The function has two arguments: what, which specifies what should be removed, and file which specifies
the path to the cache file. The latter only needs to be specified if you want to manage a different cache file.

In order to figure what is in the cache you can run clearCache() without any arguments:

clearCache()

#> Please specify which cache you want to remove. Available are:
#> - EICData (3 rows)
#> - LC50_SMILES (23 rows)
#> - MS2QMD (1 rows)
#> - MSLibraryJSON (1 rows)
#> - MSLibraryMSP (1 rows)
#> - MSPeakListsAvg (4 rows)
#> - MSPeakListsMzR (97 rows)
#> - MSPeakListsSetAvg (2 rows)
#> - RF_SMILES (5 rows)
#> - TPsLib (1 rows)
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#> - annotateSuspects (1 rows)
#> - calculatePeakQualities (3 rows)
#> - componentsCAMERA (1 rows)
#> - componentsNontarget (1 rows)
#> - componentsTPs (1 rows)
#> - compoundsCluster (1 rows)
#> - compoundsMetFrag (30 rows)
#> - dataCentroided (12 rows)
#> - featureGroupsOpenMS (6 rows)
#> - featuresOpenMS (69 rows)
#> - filterFGroups_blank (4 rows)
#> - filterFGroups_intensity (11 rows)
#> - filterFGroups_minAnalyses (1 rows)
#> - filterFGroups_minReplicates (83 rows)
#> - filterFGroups_replicateAbundance (8 rows)
#> - filterFGroups_replicate_group (11 rows)
#> - filterFGroups_retention (3 rows)
#> - filterMSPeakLists (4 rows)
#> - formulasFGroupConsensus (2 rows)
#> - formulasGenForm (89 rows)
#> - formulasSIRIUS (5 rows)
#> - generateTPsBT (74 rows)
#> - loadIntensities (69 rows)
#> - mzREIC (3426 rows)
#> - reportHTMLCompounds (1 rows)
#> - reportHTMLFormulas (1 rows)
#> - screenSuspects (7 rows)
#> - screenSuspectsPrepList (8 rows)
#> - specData (12 rows)
#> - all (removes complete cache database)

Using this output you can re-run the function again, for instance:

clearCache("featuresOpenMS")
clearCache(c("featureGroupsOpenMS", "formulasGenForm")) # clear multiple
clearCache("OpenMS") # clear all with OpenMS in name (ie partial matched)
clearCache("all") # same as simply removing the file

8.13 Parallelization

Some steps in the non-target screening workflow are inherently computationally intensive. To reduce com-
putational times patRoon is able to perform parallelization for most of the important functionality. This is
especially useful if you have a modern system with multiple CPU cores and sufficient RAM.

For various technical reasons several parallelization techniques are used, these can be categorized as paral-
lelization of R functions and multiprocessing. The next sections describe both parallelization approaches in
order to let you optimize the workflow.

8.13.1 Parellization of R functions

Several functions of patRoon support parallelization.
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Function Purpose Remarks
findFeatures Obtain feature data Only envipick and kpic2

algorithms.
generateComponents Generate components Only cliquems algorithm.
report Reporting data
generateTPs Obtain transformation products Only cts algorithm.
optimizeFeatureFinding,
optimizeFeatureGrouping

Optimize feature finding/grouping
parameters

Discussed here.

calculatePeakQualities Calculate feature (group) qualities Discussed here.
predictTox /
predictRespFactors

Prediction of toxicities/concentrations } Only compounds methods.
Discussed here.

The parallelization is achieved with the future and future.apply R packages. To enable parallelization of
these functions the parallel argument must be set to TRUE and the future framework must be properly
configured in advance. For example:

# setup three workers to run in parallel
future::plan("multisession", workers = 3)

# find features with enviPick in parallel
fList <- findFeatures(anaInfo, "envipick", parallel = TRUE)

It is important to properly configure the right future plan. Please see the documentation of the future
package for more details.

8.13.2 Multiprocessing

patRoon relies on several external (command-line) tools to generate workflow data. These commands may
be executed in parallel to reduce computational times (‘multiprocessing’). The table below outlines the tools
that are executed in parallel.

Tool Used by Notes
msConvert convertMSFiles(algorithm="pwiz", ...)
FileConverter convertMSFiles(algorithm="openms",

...)
FeatureFinderMetabo findFeatures(algorithm="openms", ...)
julia findFeatures(algorithm="safd", ...)
SIRIUS findFeatures(algorithm="sirius", ...)
MetaboliteAdductDechargergenerateComponents(algorithm="openms",

...)
GenForm generateFormulas(agorithm="genform",

...)
SIRIUS generateFormulas(agorithm="sirius",

...),
generateCompounds(agorithm="sirius",
...)

Only if splitBatches=TRUE

MetFrag generateCompounds(agorithm="metfrag",
...)

pngquant reportHTML(...) Only if optimizePng=TRUE
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Tool Used by Notes
BioTransformer generateTPs(algorithm =

"biotransformer")
Disabled by default (see
?generateTPs for details).

Multiprocessing is either performed by executing processes in the background with the processx R pack-
age (classic interface) or by futures, which were introduced in the previous section. An overview of the
characteristics of both parallelization techniques is shown below.

classic future

requires little or no configuration configuration needed to setup
works with all tools doesn’t work with pngquant and slower with GenForm
only supports parallelization on the local
computer

allows both local and cluster computing

Which method is used is controlled by the patRoon.MP.method package option. Note that reportHTML()
will always use the classic method for pngquant.

8.13.2.1 Classic multiprocessing interface The classic interface is the ‘original’ method implemented
in patRoon, and is therefore well tested and optimized. It is easier to setup, works well with all tools, and
is therefore the default method. It is enabled as follows:

options(patRoon.MP.method = "classic")

The number of parallel processes is configured through the patRoon.MP.maxProcs option. By default it is
set to the number of available CPU cores, which results usually in the best performance. However, you may
want to lower this, for instance, to keep your computer more responsive while processing or limit the RAM
used by the data processing workflow.

options(patRoon.MP.maxProcs = 2) # do not execute more than two tools in parallel.

This will change the parallelization for the complete workflow. However, it may be desirable to change this
for only a part the workflow. This is easily achieved with the withOpt() function.

# do not execute more than two tools in parallel.
options(patRoon.MP.maxProcs = 2)

# ... but execute up to four GenForm processes
withOpt(MP.maxProcs = 4, {

formulas <- generateFormulas(fGroups, "genform", ...)
})

The withOpt function will temporarily change the given option(s) while executing a given code block and
restore it afterwards (it is very similar to the with_options() function from the withr R package). Further-
more, notice how withOpt() does not require you to prefix the option names with patRoon..
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8.13.2.2 Multiprocessing with futures The primary goal of the “future” method is to allow parallel
processing on one or more external computers. Since it uses the future R package, many approaches are
supported, such as local parallelization (similar to the classic method), cluster computing via multiple
networked computers and more advanced HPC approaches such as slurm via the future.batchtools R package.
This parallelization method can be activated as follows:

options(patRoon.MP.method = "future")

# set a future plan

# example 1: start a local cluster with four nodes
future::plan("cluster", workers = 4)

# example 2: start a networked cluster with four nodes on PC with hostname "otherpc"
future::plan("cluster", workers = rep("otherpc", 4))

Please see the documentation of the respective packages (e.g. future and future.batchtools) for more details
on how to configure the workers.

The withOpt() function introduced in the previous subsection can also be used to temporarily switch between
parallelization approaches, for instance:

# default to future parallelization
options(patRoon.MP.method = "future")
future::plan("cluster", workers = 4)

# ... do workflow

# do classic parallelization for GenForm
withOpt(MP.method = "classic", {

formulas <- generateFormulas(fGroups, "genform", ...)
})

# .. do more workflow

8.13.2.3 Logging Most tools that are executed in parallel will log their output to text files. These files
may contain valuable information, for instance, when an error occurred. By default, the logfiles are stored in
the log directory placed in the current working directory. However, you can change this location by setting
the patRoon.MP.logPath option. If you set this option to FALSE then no logging occurs.

8.13.3 Notes when using parallelization with futures

Some important notes when using the future parallelization method:

• GenForm currently performs less optimal with future multiprocessing to the classic approach. Nev-
ertheless, it may still be interesting to use the future method to move the computations to another
system to free up resources on your local system.

• Behind the scenes the future.apply package is used to schedule the tools to be executed. The
patRoon.MP.futureSched option sets the value for the future.scheduling argument to the
future_lapply() function, and therefore allows you to tweak the scheduling.

• Make sure that patRoon is present and with the same version on all computing hosts.
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• Make sure that any external dependencies used by multiprocessing, such as MetFrag and SIRIUS, and
local compound databases, such as as PubChemLite, are also with the same version and are configured
properly. See the Installation section for more details.

• If you encounter errors then it may be handy to switch to future::plan("sequential") and see if it
works or you get more descriptive error messages.

• In order to restart the nodes, for instance after re-configuring patRoon, updating R packages etc, simply
re-execute future::plan(...).

• Setting the future.debug package option to TRUE may give you more insight what is happening to
find problems.
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